Continuous Casting of Microalloyed Steels. Influence of Composition and Operational Parameters in Billet Surface Cracking

Article Preview

Abstract:

Surface defects, mainly intergranular cracks (IGC), in as cast billet is the main concern for the production of microalloyed steels with the continuous casting process. A description is given of the IGC in the as cast billet surface and the main casting parameters influencing its formation. An analytical model of the influence of the microalloyed content in the formation of precipitates and the corresponding billet surface ductility at the temperature of billet straightening is presented. The model was validated with bibliographical ductility experimental values and was used to perform composition optimisation for continuous casting production. The analytical approach has been completed with a numerical precipitation model coupled with a continuous casting billet solidification model. The coupled program allows precipitate size distribution calculation in selected points of the cross billet section as a function of production parameters, steel composition and billet size. These precipitate distributions are important to detect ductility problems in billets and to optimise the operational parameters so as to avoid these problems.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 500-501)

Pages:

163-170

Citation:

Online since:

November 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.S. Szekeres: Clean Steel Congress 6, Balatonfured, Hungary (2002).

Google Scholar

[2] B. Mintz: Ironmaking and Steelmaking Vol. 27 (2000), p.343.

Google Scholar

[3] B. Mintz, S. Yue, J.J. Jonas: International Materials Reviews Vol. 36 (1991), p.187.

Google Scholar

[4] O. Cominelli, R. Abushosha, B. Mintz: Mater. Sci. Technol. Vol 15 (1999), p.1058.

Google Scholar

[5] R. Abushosha, O. Cominelli, B. Mintz: Mater. Sci. Technol. Vol 15. (1999), p.278.

Google Scholar

[6] B. Mintz: ISIJ Intern. Vol. 39 (1999), p.833.

Google Scholar

[7] H. Luo, L. Karjalainen, D. A Porter, Liimatainen, Y. Zhang : ISIJ Intern. Vol. 42 (2002), p.273.

Google Scholar

[8] G. Alvarez de Toledo, J. Lainez, J.C. Cirión: Mat Sc. and Eng., A173 (1993), p.287.

Google Scholar

[9] G. Walmag, A. Schmitz, C. Marique: 4th European Continuous Casting Conference (Birminghan, IoM 2002), Vol 2, p.840.

Google Scholar

[10] Y. Mahera, K. Yasumoto, H. Tomono, T. Nagamichi and Y. Ohmori: Mater. Sci. Technol. Vol. 6 (1990), p.793.

Google Scholar

[11] Precipitation of nitrides and carbides during solidification and cooling. ECSC Project 7210PR-213. Final Report December 2004. (In press).

Google Scholar

[12] Sauthoff G. Aussscheidung und Alterung, ed. Grundlagen der Warmebehandlung von Stahl, Verlag Stahleisen GmbH, Dusseldorf, (1976).

Google Scholar

[13] E.T. Turdogan: Fundamentals of Steeelmaking, The Institute of Materials (1996).

Google Scholar

[14] H. Oikawa: Tetsu to Hagané Vol. 68 (1982), p.1489.

Google Scholar

[15] Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials (1997).

Google Scholar

[16] J. Kunze, C. Mickel, M. Leonhardt, S. Oswald: Steel Research Vol. 68 (1997), p.403.

Google Scholar

[17] L.M. Cheng, E.B. Hawbolt, T.R. Meadowcroft: Met. Mater. Trans. Vol 31A (2000), p. (1907).

Google Scholar

[18] J. Kunze, C Mickel, G. Backmann, B. Beyer, M. Reibod and C. Klinkenberg: Steel Research, 68 (1997), p.441.

DOI: 10.1002/srin.199700580

Google Scholar

[19] El-Wazri, Hassani, Yue, E. Es-Sadiqi, L.E. Collins, K. Iqbal: ISIJ Intern. Vol . 39 (1999), p.253.

DOI: 10.2355/isijinternational.39.253

Google Scholar