Problems Associated with Modeling Interpass Softening during Industrial Hot Strip Rolling

Article Preview

Abstract:

The problems associated with the use of conventional rolling mill models are described. These include the unavoidable variations in temperature and strain rate (rolling speed) during rolling. They are exacerbated by the wide variety of mill types and configurations found in industry and their correspondingly broad ranges of interpass time. Finally, a major limitation arises from the approach currently employed to model the “strain accumulation” attributable to incomplete softening between passes, particularly during the processing of microalloyed steels.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 500-501)

Pages:

211-220

Citation:

Online since:

November 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.J. Jonas: ISIJ Int. Vol. 40 (2000), p.731.

Google Scholar

[2] J.J. Jonas: 2 nd Int. Conf. Thermomech. Process. (Verlag Stahleisen, Germany, 2004), p.35.

Google Scholar

[3] E.J. Palmiere, C.I. Garcia and A.J. DeArdo: Metall. Mat. Trans. A Vol. 24A (1994), p.277.

Google Scholar

[4] B. Dutta and E.J. Palmiere: Metall. Mat. Trans. A Vol. 34A (2003), p.1237.

Google Scholar

[5] J.J. Jonas and E.I. Poliak: this Proceedings.

Google Scholar

[6] C.M. Sellars: Mater. Sci. Technol. Vol. 6 (1990), p.1072.

Google Scholar

[7] G. Li, T.M. Maccagno, D.Q. Bai, and J.J. Jonas: ISIJ Int. Vol. 36 (1996), p.1479.

Google Scholar

[8] H.L. Andrade, M.G. Akben, and J.J. Jonas: Metall. Trans. Vol. 14A (1983), p. (1967).

Google Scholar

[9] C. Roucoules, P.D. Hodgson, S. Yue, and J.J. Jonas: Metall. Mater. Trans. Vol. 25A (1994), p.389 * It should be noted that the view that λ falls between 0. 5 and 1, e. g.

Google Scholar

[25] is an oversimplification. For example, when there is partial softening after just one pass, the retained strain cannot exceed the pass strain, i. e., the product λ(1 - X) in Eq. (11) cannot exceed 1. This leads to the following upper bound for λ: ( )X−≤λ 11 . Thus the λ parameter can very well be greater than unity for any X > 0.

Google Scholar

[10] S.H. Cho, K.B. Kang and J.J. Jonas: ISIJ Int. Vol. 41 (2001), p.766.

Google Scholar

[11] S.H. Cho, K.B. Kang and J.J. Jonas: Mater. Sci. Technol. Vol. 18 (2002), p.389.

Google Scholar

[12] P.D. Hodgson: Mat. Sci. Technol. Vol. 12 (1996), p.788.

Google Scholar

[13] A. Laasraoui and J.J. Jonas: Metall. Trans. A Vol. 22A (1991), p.147.

Google Scholar

[14] C. Roucoules and P.D. Hodgson: Mater. Sci. Technol. Vol. 11 (1995), p.548.

Google Scholar

[15] E.M. Focht: 37 MSWP Conf. Proc. Vol. XXXIII (ISS, 1996), p.791.

Google Scholar

[16] F. Boratto, R. Barbosa, S. Yue S. and J.J. Jonas: Proc. Int. Conf. Thermec'88, p.383.

Google Scholar

[17] D.Q. Bai, S. Yue, W.P. Sun and J.J. Jonas: Metall. Trans. A Vol. 24A (1993), p.2151.

Google Scholar

[18] S.F. Medina, A. Quispe, P. Valles and J.L. Banos: ISIJ Int. Vol. 39 (1999), p.913.

Google Scholar

[19] B. Dutta and C.M. Sellars: Mat. Sci. Technol. Vol. 3 (1987), p.197.

Google Scholar

[20] D.Q. Bai, S. Yue, T. Maccagno, and J.J. Jonas: ISIJ Int. Vol. 36 (1996), p.1084.

Google Scholar

[21] F. Siciliano, Jr. and J.J. Jonas: Metall. Trans. A Vol. 31A (2000), p.511.

Google Scholar

[22] L.P. Karjalainen, T.M. Maccagno, and J.J. Jonas: ISIJ Int. Vol. 35 (1995), p.1523.

Google Scholar

[23] L.P. Karjalainen, and J. Perttula: ISIJ Int. Vol. 36 (1996), p.729.

Google Scholar

[24] K. Minami, F. Siciliano Jr., T.M. Maccagno, and J.J. Jonas: ISIJ Int. Vol. 36 (1996), p.1507.

Google Scholar

[25] P.D. Hodgson, and R.K. Gibbs: ISIJ Int. Vol. 37 (1992), p.1329.

Google Scholar