Ferrite Grain Size Refinement in Vanadium Microalloyed Structural Steels

Article Preview

Abstract:

The addition of small quantities of vanadium in structural steels produces a significant refinement in the final ferrite microstructure. There are two different mechanisms contributing to refinement: enhancement of grain boundary ferrite nucleation and intragranular nucleation. The contribution of each mechanism depends on the vanadium content and heat treatment of the steel. In this study the contribution of both refining mechanisms has been evaluated for two V-microalloyed steels subjected to different heat treatments. The results confirm that this refinement is based on the enhancement of ferrite nucleation through particle-stimulated nucleation mechanisms, while other aspects, as the influence of vanadium slowing down the austenite-ferrite transformation kinetics, seem to exert a minor effect.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 500-501)

Pages:

411-418

Citation:

Online since:

November 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Ishikawa, T. Takahashi and T. Ochi: Metall Trans. A Vol. 25 (1994), p.929.

Google Scholar

[2] T. Furuhara and T. Maki: J.J. Jonas Symposium on Thermomechanical Processing of Steel, S. Yue, E. Es-Sadiqi eds. Metals Soc. (2000), p.465.

Google Scholar

[3] T. Kimura, A. Ohmori, F. Kawabata and K. Amano: Thermec 97, (TMS, 1997), p.645.

Google Scholar

[4] T. Kimura, F. Kawabata, K. Amano, A. Ohmori, M. Okatsu and K. Uchida: International Symposium on Steel for Fabricated Structures; (ASM, 1999), p.165.

Google Scholar

[5] S. Zajac: 43rd MWSP Conference, (ISS Charlotte, 2001) Vol. 39, p.497.

Google Scholar

[6] K. He and D. V. Edmonds: Mater. Sci. Technol. Vol 18 (2002), p.289.

Google Scholar

[7] J.Y. Cho, D. W. Suh, J. H. Kang and H.C. Lee: ISIJ International Vol. 42 (2002), p.1321.

Google Scholar

[8] T. Furuhara and T. Maki: Mater. Sci. Eng. A Vol. 312 (2001), p.145.

Google Scholar

[9] Z. Guo, N. Kimura, S. Tagashira, T. Furuhara and T. Maki: ISIJ Int. Vol. 42(2002) p.1033.

Google Scholar

[10] T. Furuhara, J. Yamaguchi, N. Sugita, G. Miyamoto and T. Maki: ISIJ Int. Vol. 43(2003), p.1630.

DOI: 10.2355/isijinternational.43.1630

Google Scholar

[11] T. Furuhara, T. Shinyoshi, G. Miyamoto, J. Yamaguchi, N. Sugita, N. Kimura, N. Takemura and T. Maki: ISIJ Int. Vol. 43(2003), p. (2028).

DOI: 10.2355/isijinternational.43.2028

Google Scholar

[12] G. Miyamoto, T. Shinyoshi, J. Yamaguchi, T. Furuhara, T. Maki and R. Uemori: Scripta Mater. Vol. 48 (2003), p.371.

DOI: 10.1016/s1359-6462(02)00451-7

Google Scholar

[13] R. Lagneborg, T. Siwecki, S. Zajac and B. Hutchinson: Scandinavian Journal of Metallurgy Vol. 28 (1999), p.186.

Google Scholar

[14] R. T. DeHoff, Quantitative Microscopy, ed. R.T. DeHoff, F.N. Rhines, McGraw-Hill Series in Materials Science and Engineering, New York (1968), p.129.

Google Scholar

[15] D. Hernández, B. López and J.M. Rodriguez-Ibabe: Microalloyed Steels 2002, R.I. Asfahani, R.L. Bodnar, M.J. Merwin eds., ASM, (2002), p.64.

Google Scholar

[16] R. A. Vandermeer and D.J. Jensen: Acta Mater. Vol. 49 (2001), p. (2083).

Google Scholar

[17] J.W. Cahn adn W.C. Hagel: Decomposition of Austenite by Diffusional Processes. Z.D. Zackay and H. I. Aaronson eds., Interscience, New York, NY( 1962) p.131.

Google Scholar

[18] A. I. Fernandez, B. Lopez and J.M. Rodriguez-Ibabe: Metall. Mater. Trans. Vol. 33A (2002), p.3089.

Google Scholar

[19] D. Hernández, Ph Thesis, University of Navarra (2003).

Google Scholar

[20] P.L. Orsetti Rossi and C.M. Sellars: Mater. Sci. Technol. Vol. 15 (1999), p.185.

Google Scholar