Processing Low and Ultra-Low Carbon Bainitic Steels with Excellent Property Combinations

Article Preview

Abstract:

Six experimental low and ultra-low carbon C-Mn-Mo-Nb-B and one conventional TMCP steel heats have been prepared to study the effects of chemical composition and hot deformation on the microstructure and the strength-toughness properties. In physical simulation tests, it was found that the deformation of austenite below the non-recrystallization temperature enhances the formation of higher-temperature bainitic morphologies and polygonal ferrite. On the other hand, hardness exhibits relatively low sensitivity to the degree of deformation below Tnr, whereas the deformation results in a distinct refinement in the microstructures, as determined by SEM-EBSD measurements, suggesting an improvement in the impact toughness. Simultaneous alloying with Mo-Nb-B seemed to be most efficient to provide high hardness and strength. Hot rolling trials indicated that the yield strength in the range 500-700 MPa with the excellent toughness down to –80 °C can be achieved in low carbon (≈ 0.03%) bainitic grades.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 500-501)

Pages:

535-542

Citation:

Online since:

November 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Cizek, B.P. Wynne, C.H.J. Davies, B.C. Muddle and P.D. Hodgson: Metall. Trans. A Vol. 33A (2002), p.1331.

Google Scholar

[2] T. Araki (ed. ): Atlas for Bainitic Microstructures - Vol. 1, Continuous Cooled Zw- microstructures of Low Carbon Steels (Iron and Steel Institute of Japan, Japan 1992).

Google Scholar

[3] I. Tamura, H. Sekine, T. Tanaka and C. Ouchi: Thermomechanical Processing of High-Strength Low-Alloy Steels (Butterworth & Co., UK 1988).

DOI: 10.1016/b978-0-408-11034-1.50016-7

Google Scholar

[4] T. Siwecki, L. Blaz and S. Petterson: HSLA Steels´2000, (Metallurgical Industry Press, China 2000), p.504.

Google Scholar

[5] D.Q. Bai, S. Yue, T. Maccagno and J.J. Jonas: ISIJ Intern. Vol. 36 (1996), p.1084.

Google Scholar

[6] A.F. Gourgues, H.M. Flower and T.C. Lindley: Mater. Sci. Technol. Vol. 16 (2000), p.26.

Google Scholar

[7] K. Hulka and J.M. Gray: Niobium 2001 Conf. (Niobium 2001 Ltd, USA 2001) p.587.

Google Scholar

[8] W.B. Lee, S.G. Hong, C.G. Park, K. H Kim and S.H. Park: Thermomechanical Processing of Steel (IOM Communications, UK 2000) p.159.

Google Scholar

[9] R.D.K. Misra, G.C. Weatherley, J.E. Hartman and A.J. Boycek: Mater. Sci. Technol. Vol. 17 (2001) p.1119.

Google Scholar

[10] J.G. Williams, C.R. Killmore, P.D. Edwards and P.G. Kelly: Thermec ´97, Int. Conf. Thermomechanical Processing of Steels and Other Materials (TMS, USA 1997), p.475.

Google Scholar

[11] D.H. Werner: Bor- und borlegierte Stähle Boron and Boron Containing Steels (Verlag Stahleisen, Germany 1990).

Google Scholar

[13] H. Cui, X. He and R. Zhi, Thermec ´97, Int. Conf. Thermomechanical Processing of Steels and other Materials (TMS, USA 1997), p.363.

Google Scholar

[14] K. Hase, T. Hoshino and K. Amano: Kawasaki Steel Tech. Rep. No. 47 (2002), p.33.

Google Scholar