Consolidation of Amorphous Al86Ni6Co2Gd6 Melt-Spun Ribbons by Twist Extrusion

Abstract:

Article Preview

Amorphous Al86Ni6Co2Gd6 ribbons produced by melt-spinning processing were consolidated using twist extrusion (TE). Electrical resistance measurements showed that under continuous heating at 5 K/min crystallization begins at 473 K by formation of Al-nanocrystals and ends at 673 K by formation of equilibrium intermetallics. From one to five TE extrusion passes were conducted in several experiments at temperatures 458-573 K and applied pressures ranged between 1150-1700 MPa. The fully dense billets with dimensions 14×23×40 mm3 were produced at extrusion temperatures ≥ 523 K. The maximum microhardness (550 kgf/mm2) was reached for the bulk materials consolidated at 523 K with a nanocomposite structure consisted of Al-nanocrystals with size about 13 nm embedded in amorphous matrix. The billet compacted at 573 K has a fully crystallized structure and lower microhardness (380 kgf/mm2).

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Edited by:

Zenji Horita

Pages:

699-704

DOI:

10.4028/www.scientific.net/MSF.503-504.699

Citation:

V. Varyukhin et al., "Consolidation of Amorphous Al86Ni6Co2Gd6 Melt-Spun Ribbons by Twist Extrusion", Materials Science Forum, Vols. 503-504, pp. 699-704, 2006

Online since:

January 2006

Export:

Price:

$38.00

[1] H. Gleiter: Acta Mater. Vol. 48 (2002), p.1.

[2] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Progr. Mater. Sci. Vol. 45 (2000), p.103.

[3] Y.T. Zhu, T.C. Lowe, T.G. Langdon: Scr. Mater. Vol. 51 (2004), p.825.

[4] A. Inoue: Progr. Mater. Sci. Vol. 43 (1998), p.365.

[5] A. Inoue, H. Kimura: Mater. Sci. Eng. A Vol. 286 (2000), p.1.

[6] I. Todd, Z. Chlup, J.S. O'Dwyer, M. Lieblich, A. Garcia-Escorial: Mater. Sci. Eng. A Vol. 375-377 (2004)p.1235.

[7] K. Matsuki, T. Aida, T. Takuchi, J. Kusui, K. Yokoi: Acta Mater. Vol. 48 (2000), p.2625.

[8] W.J. Botta Filho, J.B. Fogagnolo, C.A.D. Rorigues, C.S. Kiminami, C. Bolfarini, A.R. Yavari: Mater. Sci. Eng. A Vol. 375-377 (2004), p.936.

[9] R.Z. Valiev, V.G. Pushin, D.V. Gunderov, A.G. Popov: Dokl. Akad. Nauk Vol. 398 (2004), p.54.

[10] O.N. Senkov, D.B. Miracle, J.M. Scott, S.V. Senkova: J. Alloys and Compounds Vol. 365 (2004), p.126.

[11] O.N. Senkov, S.V. Senkova, J.M. Scott, D.B. Miracle: Mater. Sci. Eng. A Vol. 393 (2005), p.12.

[12] Y. Beygelzimer, D. Orlov, V. Varyukhin: Ultrafine Grained Materials II (The Minerals, Metals & Materials Society, Warrendale 2002), p.297.

DOI: 10.1002/9781118804537.ch35

[13] Y. Beygelzimer, V. Varyukhin, D. Orlov, B. Efros, V. Stolyarov, H. Salimgareyev: Ultrafine Grained Materials II (The Minerals, Metals & Materials Society, Warrendale 2002), p.43.

DOI: 10.1002/9781118804537.ch5

[14] H.S. Kim: Mater. Sci. Eng. A Vol. 304-306 (2001), p.327.

[15] W.J. Botta, D. Negri, A.R. Yavari: J. Non-Cryst. Solids Vol. 247 (1999), p.19.

In order to see related information, you need to Login.