A Transmission Electron Microscopy Study of the Role of Sc+Zr Addition to a 6082-T8 Alloy Subjected to Equal Channel Angular Pressing

Abstract:

Article Preview

The microstructural evolution with strain was investigated either in a Zr-modified 6082 Al-Mg-Si alloy and in the same alloy added with 0.117wt.% Sc, subjected to severe plastic deformations. Materials were deformed by equal-channel angular pressing using route BC, up to a true strain of ∼12. A strain of ~4 produced a sub-micrometer scale microstructure with very fine cells (nanometer scale) in the grain interior. The role of fine dispersoids (Al3(Sc1-x,Zrx)) was investigated by transmission electron microscopy techniques and discussed. Dispersoids were responsible for a more complex dislocation substructure with strain. Compared to the commercial parent alloy, block wall formation and propagation were favored by the presence of Sc-Zr containing dispersoids, while cell boundary evolution was less affected, compared to the commercial parent alloy. Mean misorientation across block walls increased with strain much more in the Sc-Zr containing alloy, reaching a plateau, starting from a true strain of ∼8. Misorientation across cell boundaries continuously increased to ∼8° and ∼5° for the Sc-Zr and Zr containing alloy, respectively.

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Edited by:

Zenji Horita

Pages:

841-846

Citation:

M. Cabibbo et al., "A Transmission Electron Microscopy Study of the Role of Sc+Zr Addition to a 6082-T8 Alloy Subjected to Equal Channel Angular Pressing ", Materials Science Forum, Vols. 503-504, pp. 841-846, 2006

Online since:

January 2006

Export:

Price:

$38.00

[1] M. Furukawa, Z. Horita, M. Nemoto and T.G. Langdon: Mater. Sci. Eng. A Vol. 324 (2002), p.82.

[2] H. Gleiter, in: N. Hansen, A. Horsewell, T. Leffers and H. Lilholt (Eds. ), Deformation of Polycrystals: Mechanisms and Microstructures, Risø National Laboratory, Denmark, (1981), p.15.

[3] P.G. Sanders, G.E. Fougere, L.J. Thompson, J.A. Eastman and J.R. Weertman: Nanostruct. Mater. Vol. 8 (1997), p.243.

[4] J. Eckert, J.C. Holzer, C.E. Krill and W.L. Johnson: J. Mater. Res. Vol. 7 (1992), p.1751.

[5] C.C. Koch: Nanostruct. Mater. Vol. 9 (1997), p.13.

[6] A. Gholinia, F.J. Humphreys and P.B. Prangnell: Acta Mater. Vol. 50 (2002), p.4461.

[7] Z. Horita, T. Fujinami and T.G. Langdon: Mater. Sci. Eng. A Vol. 318 (2001), p.34.

[8] V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy and V.I. Kopylov: Russian Metallurgy, Vol. 1 (1981), p.99.

[9] M. Furukawa, Z. Horita and T.G. Langdon: Mater. Sci. Eng. A Vol. 332 (2002), p.97.

[10] K. Nakashima, Z. Horita, M. Nemoto and T.G. Langdon: Mater. Sci. Eng. A Vol. 281 (2000), p.82.

[11] S. Komura, M. Furukawa, Z. Horita, M. Nemoto and T.G. Langdon: Mater. Sci. Eng. A Vol. 297 (2001), p.111.

[12] D. Kuhlmann-Wilsdorf: Mater. Sci. Eng. A Vol. ll3 (1989), p.1.

[13] P.J. Apps, J.R. Bowen and P.B. Prangnell: Acta Mater. Vol. 51 (2003), p.2811.

[14] A. Godfrey and D.A. Hughes: Mater. Charact. Vol. 48 (2002), p.89.

[15] N. Hansen and D. Juul Jensen: Acta Metall. Vol. 40 (1992), p.3265.

[16] M. Cabibbo and E. Evangelista: Proc. of ICAA-9, ed. IMEA, Brisbane, Australia (2004), p.190.

[17] M. Cabibbo, E. Evangelista and V. Latini: J. Mater. Sci. Vol. 39 (2004), p.5659.

[18] P.L. Sun, P.W. Kao and C.P. Chang: Metall. Mater. Trans. A Vol. 35 (2004), p.1359.

[19] D.N. Seidman, E.A. Marquis and D.C. Dunand: Acta Mater. Vol. 50 (2002), p.4021.

[20] V.G. Davydov, T.D. Rostova, V.V. Zakharov, Y.A. Filatov, and V.I. Yelagin: Mater. Sci. Eng. A Vol. 280 (2000), p.30.

[21] A. Tolley, V. Radmilovic and U. Dahmen: Scripta Mater. Vol. 52 (2005), p.621.