[1]
Wang L, Bian XF, Li H. Structural characteristics of AuAg3 alloy melt and crystal growth by molecular dynamics simulation. Materials Letters, Vol. 51 (1) (2001), p.7.
DOI: 10.1016/s0167-577x(01)00254-3
Google Scholar
[2]
Sheng HW, He JH, Ma E. Molecular dynamics simulation studies of atomic-level structures in rapidly quenched Ag-Cu nonequilibrium alloys. Physical Review B, Vol. 65 (2002), pp.184203-1.
DOI: 10.1103/physrevb.65.184203
Google Scholar
[3]
Noya EG, Rey C, Gallego LJ. Amorphization of Ni-Al alloys by fast quenching from the liquid state: a molecular dynamics study. Journal of Non-Crystalline Solids; Vol. 298 (1) (2002), p.60.
DOI: 10.1016/s0022-3093(01)01048-1
Google Scholar
[4]
Zhang T, Inoue A. Thermal and mechanical properties of Ti-Ni-Cu-Sn amorphous alloys with a wide supercooled liquid region before crystallization. Materials Transactions JIM; Vol. 39 (10) (1998), p.1001.
DOI: 10.2320/matertrans1989.39.1001
Google Scholar
[5]
Chen W, Wang Y, Qiang J, Dong C. Bulk metallic glasses in the Zr-Al-Ni-Cu system. Acta Materialia; Vol. 51 (7) (2003), p.1899.
DOI: 10.1016/s1359-6454(02)00596-7
Google Scholar
[6]
Jiang JZ, Saksl K, Nishiyama N, Inoue A. Crystallization in 204040 PNiPd glass. Journal of Applied Physics; Vol. 92 (7) (2002), p.3651.
DOI: 10.1063/1.1505681
Google Scholar
[7]
Jiang JZ, Roseker W, Sikorski M, Cao QP, Xu F. Pressure effect of glass transition temperature in 27. 5107. 58. 246. 8 BeNiCuTiZr bulk metallic glass. Applied Physics Letters; Vol. 84 (11) (2004), p.1871.
DOI: 10.1063/1.1675937
Google Scholar
[8]
Pan MX, Wang JG, Yao YS, Zhao DQ, Wang WH. Phase transition of Zr41Ti14Cu12. 5Ni10Be22. 5 bulk amorphous below glass transition temperature under high pressure. Applied Physics Letters; Vol. 78 (5) (2001), p.601.
DOI: 10.1063/1.1343502
Google Scholar
[9]
Pan MX, Wang JG, Yao YS, Zhao DQ, Wang WH. Pressure dependence of crystallization in Zr41Ti14Cu12. 5Ni10Be22. 5 bulk metallic glass. Journal of Physics-Condensed Matter; Vol. 13 (26) (2001), L589-L594.
DOI: 10.1088/0953-8984/13/26/101
Google Scholar
[10]
Pan MX, Yao YS, Zhao DQ, Zhuang YX, Wang WH. Pressure-controlled nucleation and growth in Zr41Ti14Cu12. 5Ni10Be22. 5 bulk metallic glass close to and beyond glass transition temperature. Physics Letters A; Vol. 303 (2-3) (2002), p.229.
DOI: 10.1016/s0375-9601(02)01226-4
Google Scholar
[11]
Wang WH, Zhuang YX, Pan MX, Yao YS. Glass transition behavior, crystallization kinetics, and microstructure change of Zr41Ti14Cu12. 5Ni10Be22. 5 bulk metallic glass under high pressure. Journal of Applied Physics; Vol. 88 (7) (2000), p.3914.
DOI: 10.1063/1.1290262
Google Scholar
[12]
Wang WH, Wang RJ, Zhao DQ, Pan MX, Yao YS. Microstructural transformation in a Zr41Ti14Cu12. 5Ni10Be22. 5 bulk metallic glass under high pressure. Physical Review B; Vol. 62 (17) (2000), p.11292.
Google Scholar
[13]
Zhang J, Zhang HF, Quan MX, Hu ZQ. Effect of pressure on crystallization process of Zr55Al10Ni5Cu30 bulk metallic glass. Materlals Letters; Vol. 58 (7-8) (2004), p.1379.
DOI: 10.1016/j.matlet.2003.09.031
Google Scholar
[14]
Qi Y, Cagin T, Kimura Y, Goddard WA. Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni. Physical Review B; Vol. 59 (5) (1999), p.3527.
DOI: 10.1103/physrevb.59.3527
Google Scholar
[15]
Murray SD and MI Baskes. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B; Vol. 29 (1984), p.6443.
DOI: 10.1103/physrevb.29.6443
Google Scholar
[16]
. Fabrizio C and Vittorio R. Tight-binding potentials for transition metals and alloys. Physical Review B; Vol. 48 (1993), p.22.
Google Scholar