Fabrication and Characterization of 3D Aspheric Microlenses with Arbitrary Surface Profiles Based on a Novel Excimer Laser Contour Scanning Method

Article Preview

Abstract:

This paper presents a new method for fabricating 3D microstructures with an excimer laser micromachining system. A novel mask contour scanning method is developed for obtaining precise 3D microstructures with pre-described continuous surface profile. Two different microlenses with spherical and aspheric surfaces profiles with dimension less than 200 μm are fabricated on polycarbonate (PC) samples. The surface profiles are measured and compared with their theoretical counterparts. Excellent agreements both in profile shapes and dimensions are achieved. The surface roughness (Ra) of the machined surfaces is also measured and is less than 10 nm. The machining profile accuracy and surface smoothness of this proposed micromachining method show great potentials in fabricating micro-optic components such as aspheric microlenses or microlens arrays.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 505-507)

Pages:

67-72

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Sinzinger and J. Jahns, Microoptics 2nd ed. (Wiley-VCH, Weinheim, 2003), Chap. 1.

Google Scholar

[2] B. Kress and P. Meyrueis, Digital Diffractive Optics (John Wiley & Sons, Chichester, 2000).

Google Scholar

[3] A. Nicia, Lens coupling in fiber-optic devices: efficiency limit, Appl. Opt. 20(18), 3136-3145 (1981).

DOI: 10.1364/ao.20.003136

Google Scholar

[4] C. -H. Tein, Y. -E. Chien, Y. Chiu, and H. -P. Shien, Microlens array fabricated by excimer laser micromachining with grey-tone photolithography, Jpn. J. Appl. Phys. Pt. 1, 42, 1280-1283 (2003).

DOI: 10.1143/jjap.42.1280

Google Scholar

[5] K. Zimmer, D. Hirsch and F. Bigl, Excimer laser machining for the fabrication of analogous microstructures, Appl. Surf. Sci. 96-98, 425-429 (1995).

DOI: 10.1016/b978-0-444-82412-7.50076-6

Google Scholar

[6] K. Naessens, H. Ottevaere, R. Baets, P.V. Daele, and H. Thienpont, Direct writing of microlenses in polycarbonate with excimer laser ablation, Appl. Optics 42, 6349-6359 (2003).

DOI: 10.1364/ao.42.006349

Google Scholar

[7] L.M. Galantucci and F. Giusti, Excimer laser cutting: experimental characterization and 3D numerical modeling for polyester resins, Annals CIRP 47, 141-144 (1998).

DOI: 10.1016/s0007-8506(07)62803-0

Google Scholar

[8] K. Zimmer, A. Braun, and F. Bigl, Combination of different processing methods for the fabrication of 3D polymer structures by excimer laser machining, Appl. Surf. Sci. 154-155, 601-604 (2000).

DOI: 10.1016/s0169-4332(99)00423-7

Google Scholar

[9] K. Zimmer, D. Hirsch and F. Bigl, Excimer laser machining for the fabrication of analogous microstructures, Appl. Surf. Sci. 96-98 (1995) 425-429.

DOI: 10.1016/b978-0-444-82412-7.50076-6

Google Scholar

[10] K. Naessens, H. Ottevaere, P.V. Daele, R. Baets, Flexible fabrication of microlenses in polymer layers with excimer laser ablation, Appl. Surf. Sci. 208-209 (2003) 159-164.

DOI: 10.1016/s0169-4332(02)01359-4

Google Scholar

[11] K. Naessens, H. Ottevaere, R. Baets, P.V. Daele, and H. Thienpont, Direct writing of microlenses in polycarbonate with excimer laser ablation, Appl. Optics 42 (2003) 6349-6359.

DOI: 10.1364/ao.42.006349

Google Scholar

[12] J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J. 7 (1965) 308-313.

Google Scholar

[13] W. H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes, Cambridge University Press, New York, 1986, Section 10. 4.

DOI: 10.1007/bf01321860

Google Scholar