Mechanical Behavior of TiB2 Nanoparticles Reinforced Cu Matrix Composites Synthesized by In-Situ Processing

Abstract:

Article Preview

Cu-TiB2 nanocomposite powders were in situ synthesized by combining high-energy ball milling of Cu-Ti-B elemental powder mixtures as precursors and subsequent self-propagating high temperature synthesis (SHS). Cu-40wt.% TiB2 was produced after SHS reaction and then diluted by copper to obtain desired homogeneous composites with 2.5, 5 and 10wt.%TiB2. Spark plasma sintering (SPS) was used to inhibit grain growth and thereby obtain fully Cu-TiB2 sintered bodies with nanocomposite structure. After SHS reaction, only Cu and TiB2 phases were detected in the SHS-product. Spheroidal TiB2 particles smaller than 250nm were formed in the copper matrix after SHS-reaction. Mechanical and electrical properties were investigated after SPS at 650°C for 30min under 50MPa. The electrical conductivity decreased from 75 to 54% IACS with increasing of TiB2 contents from 2.5 to 10wt.%. However, hardness increased from 56 to 97HRB. In addition, the tensile strength increased with increasing the TiB2 content.

Info:

Periodical:

Materials Science Forum (Volumes 510-511)

Edited by:

Hyung Sun Kim, Yu Bao Li and Soo Wohn Lee

Pages:

346-349

DOI:

10.4028/www.scientific.net/MSF.510-511.346

Citation:

D. H. Kwon et al., "Mechanical Behavior of TiB2 Nanoparticles Reinforced Cu Matrix Composites Synthesized by In-Situ Processing", Materials Science Forum, Vols. 510-511, pp. 346-349, 2006

Online since:

March 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.