Effect of Melt Depth and Nozzle Type on the Mixing Behavior in Bottom-Blown Steelmaking Ladle – A Water Model Approach

Abstract:

Article Preview

It is generally well known that a steelmaking ladle operation plays an important role in the production of clean steel. A turbulent mixing of melt with Ar gas bubbling from the ladle bottom can homogenize a melt temperature and can control precisely chemical compositions of steel. In order to figure out these phenomena, a quantitative analysis of fluid flow behavior of gas and melt during a ladle operation is required and special concerns should be focused on effects of operating parameters on the perfect mixing time of melt. In this study, as a basic approach, effects of operating parameters such as a melt depth (aspect ratio) and a nozzle type (one-hole or porous plug) on the mixing behavior in ladle operation are investigated. Water model experiments are carried out to simulate these melt behaviors in steelmaking ladle. As a result, it was found that there exist an optimized melt depth and a nozzle type at a given gas flow rate, which affect significantly on the mixing behavior of melt.

Info:

Periodical:

Materials Science Forum (Volumes 510-511)

Edited by:

Hyung Sun Kim, Yu Bao Li and Soo Wohn Lee

Pages:

494-497

DOI:

10.4028/www.scientific.net/MSF.510-511.494

Citation:

S.-H. Cho et al., "Effect of Melt Depth and Nozzle Type on the Mixing Behavior in Bottom-Blown Steelmaking Ladle – A Water Model Approach", Materials Science Forum, Vols. 510-511, pp. 494-497, 2006

Online since:

March 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.