A Study of Ga2O3 Nanomaterials Synthesized by the Thermal Evaporation of GaN Powders

Article Preview

Abstract:

We have synthesized gallium oxide (Ga2O3) nanomaterials at two different growth temperatures on iridium (Ir)-coated substrates by thermal evaporation of GaN powders. The products consist mainly of nanobelts, with some additional nanosheets. The nanobelts were of a single-crystalline monoclinic Ga2O3 structure. The broad emission photoluminescence band of 900°C-products had a different peak position from that of the 970°C-products.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 510-511)

Pages:

654-657

Citation:

Online since:

March 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. W. Wong, P. E. Sheehan and C. M. Lieber: Science Vol. 277 (1997), p. (1971).

Google Scholar

[2] J. T. Hu, T. W. Odom and C. M. Lieber: Acc Chem Res Vol. 32 (1999), p.435.

Google Scholar

[3] Z. W. Pan, Z. R. Dai and Z. L. Wang: Science Vol. 291 (2001), p. (1947).

Google Scholar

[4] L. F. Dong, J. Jiao, D. W. Tuggle, J. Petty, S. A. Elliff and M. Coulter: Appl Phys Lett Vol. 82 (2003), p.1096.

DOI: 10.1063/1.1554477

Google Scholar

[5] L. Wang, X. Zhang and F. Zeng: Mater. Sci. Forum Vol. 475-479 (2005), p.3535.

Google Scholar

[6] Z. Xie, W. Yang, H. Miao, L. Zhang and L. An: Mater. Sci. Forum Vol. 475-479 (2005), p.1239.

Google Scholar

[7] G. Gundiah, A. Govindaraj and C. N. R. Rao: Chem Phys Lett Vol. 351 (2002), p.189.

Google Scholar

[8] J. Zhang and L. D. Zhang: Solid State Commun vol. 122 (2002): p.493.

Google Scholar

[9] J. S. Lee, K. Park, S. Nahm, S. W. Kim and S. Kim: J Cryst Growth Vol. 244 (2002), p.287.

Google Scholar

[10] Z. R. Dai, Z. W. Pan and Z. L. Wang: J Phys Chem B Vol. 106 (2002), p.902.

Google Scholar

[11] J. Zhang, F. Jiang and L. D. Zhang: Phys Lett A Vol. 322 (2004), p.363.

Google Scholar

[12] B. Y. Geng, L. D. Zhang, G. W. Meng, T. Xie, X. S. Peng and Y. Lin: J Cryst Growth Vol. 259 (2003), p.291.

Google Scholar

[13] X. Xiang, C. B. Cao, Y. J. Guo and H. S. Zhu: Chem Phys Lett Vol. 378 (2003), p.660.

Google Scholar

[14] J. Guojian, Z. Hanrui, Z. Jiong, R. Meiling, L. Wenlan, W. Fengying and Z. Baolin: J Mater Sci Vol. 35 (2000), p.63.

DOI: 10.1023/a:1004732314397

Google Scholar

[15] H. W. Kim and N. H. Kim: Appl Phys A, Vol. 80 (2005), p.537.

Google Scholar

[16] C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang and S. Y. Zhang: Appl Phys Lett Vol. 89 (2001), p.3202.

Google Scholar

[17] T. Harwig and F. Kellendouk: J Solid State Chem Vol., 24 (1978), p.255.

Google Scholar

[18] V. I. Vasil'tsiv, Y. N. Zakharko and Y. I. Prim: Ukr Fiz Zh Vol. 33 (1988), p.1320.

Google Scholar

[19] L. Binet and D. Gourier: J Phys Chem Solids Vol. 59 (1998), p.1241.

Google Scholar

[20] Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang and D. P. Yu: Phys Rev B Vol. 69 (2004), p.075304. 111.

Google Scholar