Oscillatory Phenomena during Anodic Copper Electrodissolution in Trifluoroacetic Acid Solution

Article Preview

Abstract:

This work presents the current oscillation phenomena observed in an electrochemical Cu/0.5 M CF3COOH system. The dynamical response of this new oscillator was followed by both current density-potential (j-E) and current density-time (j-t) curves. The current oscillation phenomena of the investigated system were monitored over various potential scan rates and constant applied potentials as control parameters. The increase of potential scan rate significantly decreases both the potential range of current oscillations and the frequency of oscillations. At the j-t curves both the simple and the complex (period adding) oscillations were found. Moreover, with the increase of applied potential, the increase of period of oscillations and current oscillation amplitudes were observed. It appears that the period of current oscillations exponentially grows with applied potential.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

301-306

Citation:

Online since:

July 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Russell and J. Newman: J. Electrochem. Soc. Vol. 133 (1986), p. (2093).

Google Scholar

[2] H.P. Lee, K. Nobe and A.J. Pearlsten: J. Electrochem. Soc. Vol. 132 (1985), p.1031.

Google Scholar

[3] L. Li, S. Chen, H. Wu and H. Cui: J. Serb. Chem. Soc. 69 (2004), p.33.

Google Scholar

[4] D. Sazou and M. Pagitsas: Electrochim. Acta Vol. 40 (1995), p.755.

Google Scholar

[5] W. Lou and K. Ogura: Electrochim. Acta Vol. 40 (1995), p.667.

Google Scholar

[6] D. Sazou and M. Pagitsas: J. Electroanal. Chem. Vol. 451 (1998), p.71.

Google Scholar

[7] L. Li, S. -H. Chen, X. -G. Yang, C. Wang and W. -J. Gou: J. Electroanal. Chem. Vol. 572 (2004), p.41.

Google Scholar

[8] D. Sazou, A. Diamantopoulou and M. Pagitsas: Electrochim. Acta Vol. 45 (2000), p.2753.

Google Scholar

[9] D. Sazou, A. Diamantopoulou and M. Pagitsas: Electrochim. Acta Vol. 47 (2002), p.4163.

Google Scholar

[10] D. Sazou and M. Pagitsas: Chaos, Solutions and Fractals Vol. 17 (2003), p.505.

Google Scholar

[11] Z. Lu, D. Huang, W. Yang and J. Congleton: Corr. Sci. Vol. 45 (2001), p.2233.

Google Scholar

[12] Q. -K. Yu, Y. Miyakita, S. Nakabayashi and R. Baba: Electrochem. Commun. Vol. 5 (2003), p.321.

Google Scholar

[13] Y. Wang, J.L. Hudson and N.I. Jaeger: J. Electrochem. Soc. Vol. 137 (1990), p.485.

Google Scholar

[14] D. Sazou, A. Diamantopoulou and M. Pagitsas: Chaos, Solutions and Fractals Vol. 17 (2003), p.263.

Google Scholar

[15] P. Russell and J. Newman: J. Electrochem. Soc. Vol. 134 (1987), p.1051.

Google Scholar

[16] A.J. Pearlsten, H.P. Lee and K. Nobe: J. Electrochem. Soc. Vol. 132 (1985), p.2159.

Google Scholar

[17] M. Itagaki, T. Mori and K. Watanabe: Corr. Sci. Vol. 41 (1999), p. (1955).

Google Scholar

[18] E. Cazares-Ibanez, G.A. Vazquez-Coutino and E. Garcia Ochao: J. Electroanal. Chem. Vol. 583 (2005), p.17.

Google Scholar

[19] I. Z Kiss, V. Gáspár, L. Nycos and P. Paramanda: J. Phys Chem. A Vol. 101 (1997), p.8668.

Google Scholar

[20] Q. Cui and H. D. Dewald: Electrochim. Acta Vol. 50 (2005), p.2423.

Google Scholar

[21] I.Z. Kiss, V. Gáspár and L. Nycos: J. Phys Chem. A Vol. 102 (1998), p.909.

Google Scholar