Oscillatory Phenomena during Anodic Copper Electrodissolution in Trifluoroacetic Acid Solution

Abstract:

Article Preview

This work presents the current oscillation phenomena observed in an electrochemical Cu/0.5 M CF3COOH system. The dynamical response of this new oscillator was followed by both current density-potential (j-E) and current density-time (j-t) curves. The current oscillation phenomena of the investigated system were monitored over various potential scan rates and constant applied potentials as control parameters. The increase of potential scan rate significantly decreases both the potential range of current oscillations and the frequency of oscillations. At the j-t curves both the simple and the complex (period adding) oscillations were found. Moreover, with the increase of applied potential, the increase of period of oscillations and current oscillation amplitudes were observed. It appears that the period of current oscillations exponentially grows with applied potential.

Info:

Periodical:

Edited by:

Dragan P. Uskokovic, Slobodan K. Milonjic and Dejan I. Rakovic

Pages:

301-306

DOI:

10.4028/www.scientific.net/MSF.518.301

Citation:

N. Potkonjak et al., "Oscillatory Phenomena during Anodic Copper Electrodissolution in Trifluoroacetic Acid Solution", Materials Science Forum, Vol. 518, pp. 301-306, 2006

Online since:

July 2006

Export:

Price:

$38.00

[1] P. Russell and J. Newman: J. Electrochem. Soc. Vol. 133 (1986), p. (2093).

[2] H.P. Lee, K. Nobe and A.J. Pearlsten: J. Electrochem. Soc. Vol. 132 (1985), p.1031.

[3] L. Li, S. Chen, H. Wu and H. Cui: J. Serb. Chem. Soc. 69 (2004), p.33.

[4] D. Sazou and M. Pagitsas: Electrochim. Acta Vol. 40 (1995), p.755.

[5] W. Lou and K. Ogura: Electrochim. Acta Vol. 40 (1995), p.667.

[6] D. Sazou and M. Pagitsas: J. Electroanal. Chem. Vol. 451 (1998), p.71.

[7] L. Li, S. -H. Chen, X. -G. Yang, C. Wang and W. -J. Gou: J. Electroanal. Chem. Vol. 572 (2004), p.41.

[8] D. Sazou, A. Diamantopoulou and M. Pagitsas: Electrochim. Acta Vol. 45 (2000), p.2753.

[9] D. Sazou, A. Diamantopoulou and M. Pagitsas: Electrochim. Acta Vol. 47 (2002), p.4163.

[10] D. Sazou and M. Pagitsas: Chaos, Solutions and Fractals Vol. 17 (2003), p.505.

[11] Z. Lu, D. Huang, W. Yang and J. Congleton: Corr. Sci. Vol. 45 (2001), p.2233.

[12] Q. -K. Yu, Y. Miyakita, S. Nakabayashi and R. Baba: Electrochem. Commun. Vol. 5 (2003), p.321.

[13] Y. Wang, J.L. Hudson and N.I. Jaeger: J. Electrochem. Soc. Vol. 137 (1990), p.485.

[14] D. Sazou, A. Diamantopoulou and M. Pagitsas: Chaos, Solutions and Fractals Vol. 17 (2003), p.263.

[15] P. Russell and J. Newman: J. Electrochem. Soc. Vol. 134 (1987), p.1051.

[16] A.J. Pearlsten, H.P. Lee and K. Nobe: J. Electrochem. Soc. Vol. 132 (1985), p.2159.

[17] M. Itagaki, T. Mori and K. Watanabe: Corr. Sci. Vol. 41 (1999), p. (1955).

[18] E. Cazares-Ibanez, G.A. Vazquez-Coutino and E. Garcia Ochao: J. Electroanal. Chem. Vol. 583 (2005), p.17.

[19] I. Z Kiss, V. Gáspár, L. Nycos and P. Paramanda: J. Phys Chem. A Vol. 101 (1997), p.8668.

[20] Q. Cui and H. D. Dewald: Electrochim. Acta Vol. 50 (2005), p.2423.

[21] I.Z. Kiss, V. Gáspár and L. Nycos: J. Phys Chem. A Vol. 102 (1998), p.909.

In order to see related information, you need to Login.