Creep of Al-Sc Microalloys with Rare-Earth Element Additions

Article Preview

Abstract:

Cast and aged Al-Sc microalloys are creep-resistant to 300‰, due to the blocking of dislocations by nanosize, coherent Al3Sc (L12) precipitates. Rare-earth elements substitute for Sc in these precipitates, leading to a higher number density of smaller precipitates, which have a greater lattice-parameter mismatch with Al than in the Al-Sc binary microalloy. This leads to an improvement in both ambient temperature microhardness and high temperature creep. Creep threshold stresses of Al-Sc-RE (RE = Y, Dy, or Er) at 300‰ are higher than for Al-Sc and Al-Sc-M (M = Mg, Ti, or Zr) microalloys. This is in agreement with a dislocation climb model that includes the elastic stress fields of the precipitates.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 519-521)

Pages:

1035-1040

Citation:

Online since:

July 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Røyset and N. Ryum: Int. Mater. Rev. Vol. 50 (2005), pp.19-44.

Google Scholar

[2] E.A. Marquis and D.N. Seidman: Acta Mater. Vol. 49 (2001), p.1909-(1919).

Google Scholar

[3] S. Iwamura and Y. Miura: Acta Mater. Vol. 52 (2004), pp.591-600.

Google Scholar

[4] C.B. Fuller, D.N. Seidman and D.C. Dunand: Scripta Mater. Vol 40 (1999), pp.691-696.

Google Scholar

[5] D.N. Seidman, E.A. Marquis and D.C. Dunand: Acta Mater. Vol 50 (2002), pp.4021-4035.

Google Scholar

[6] E.A. Marquis, D.N. Seidman and D.C. Dunand: Acta Mater. Vol. 51 (2003), pp.285-287.

Google Scholar

[7] E.A. Marquis, D.N. Seidman and D.C. Dunand: Acta Mater. Vol. 51 (2003), pp.4751-4760.

Google Scholar

[8] M.E. van Dalen, D.C. Dunand and D.N. Seidman: Acta Mater. Vol. 53 (2005), pp.4225-4235.

Google Scholar

[9] C.B. Fuller, D.N. Seidman and D.C. Dunand: Acta Mater. Vol. 51 (2003), pp.4803-4814.

Google Scholar

[10] Y. Harada and D.C. Dunand: Mat. Sci. Eng. A Vol. 329 (2002), pp.686-695.

Google Scholar

[11] E.A. Marquis and D.C. Dunand: Scripta Mater. Vol. 47 (2002), pp.503-508.

Google Scholar

[12] K.E. Knipling, D.C. Dunand and D.N. Seidman: Z. Metallkd. To appear (2006).

Google Scholar

[13] O.I. Zalutska, V.R. Ryabov and I.I. Zalutsky: Dopov. Akad. Nauk. A (1969), pp.255-259.

Google Scholar

[14] O.I. Zalutska, et al.: Dopov. Akad. Nauk. A (1970), pp.751-753.

Google Scholar

[15] A. Palenzon: J. Less-Common Met. Vol. 29 (1972), pp.289-292.

Google Scholar

[16] L.F. Mondolfo: Aluminum Alloys: Structure and Properties (Butterworths, London, 1976).

Google Scholar

[17] S.I. Fujikawa: Defect Diffus. Forum Vol. 143 (1997), pp.115-120.

Google Scholar

[18] R.R. Sawtell and J. J. W. Morris in: Kim and Griffith (eds), Dispersion Strengthened Aluminum Alloys (TMS, Warrendale, 1988), pp.409-420.

Google Scholar

[19] R. Lagneborg and B. Bergman: Met. Sci. Vol. 10 (1976), pp.20-28.

Google Scholar

[20] E. Arzt in: Ochiai (ed), Mechanical Properties of Metallic Composites (Marcel Dekker, New York, 1994), pp.205-223.

Google Scholar

[21] J. R¨osler and E. Arzt: Acta Metall. Vol. 36 (1988), pp.1043-1051.

Google Scholar