Mapping the Crystal Orientation Distribution Function to Discrete Orientations in Crystal Plasticity Finite Element Forming Simulations of Bulk Materials

Abstract:

Article Preview

The crystal plasticity finite element method (CPFEM) is probably the method with the best potential to directly incorporate crystal anisotropy and its evolution into forming simulations. However, when it comes to the simulation of bulk materials, the representation of the crystal orientation distribution function (ODF), i.e. of the statistical texture, within the CPFEM framework becomes a key issue for the efficiency of the approach. In this work two different approaches for sampling the ODF are compared. The first is the so called Texture-Component-CPFEM, where the discretisation is based on the representation of the ODF by texture components. The second approach is based on the representation of the ODF by series expansion and uses a direct mapping of the ODF represented in the form of C-coefficients to individual orientations as needed by the CPFEM. Both methods are compared using the textures of Aluminum hot band as well as cold rolled material.

Info:

Periodical:

Materials Science Forum (Volumes 519-521)

Edited by:

W.J. Poole, M.A. Wells and D.J. Lloyd

Pages:

803-808

DOI:

10.4028/www.scientific.net/MSF.519-521.803

Citation:

F. Roters "Mapping the Crystal Orientation Distribution Function to Discrete Orientations in Crystal Plasticity Finite Element Forming Simulations of Bulk Materials", Materials Science Forum, Vols. 519-521, pp. 803-808, 2006

Online since:

July 2006

Authors:

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.