Preparation and Characterisation of Open-Cell Microporous Nickel

Article Preview

Abstract:

In the present study, nickel foams with an open cell microporous structure were fabricated by the so-called space-holding particle sintering method, which included the adding of a particulate polymeric material (PMMA). The average pore size of the nickel foams approximated 10.5 μm; and the porosity ranged from 70 % to 80 %. The porous characteristics of the nickel foams were observed using scanning electron microscopy and the mechanical properties were evaluated using compressive tests. For comparison, nickel foams with an open-cell macroporous structure (pore size approximately 1.3 mm) were also presented. Results indicated that the nickel foams with a microporous structure possess enhanced mechanical properties than those with a macroporous structure.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

1833-1838

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Banhart and J. Baumeister: J. of Mater. Sci., Vol. 33, (1998), p.1431.

Google Scholar

[2] S.K. Maiti, L.J. Gibson, M.F. Ashby: Acta Mater. Vol. 32, (1984), p. (1963).

Google Scholar

[3] A.E. Simone, L.J. Gibson: Acta Mater. Vol. 46, (1998), p.2139.

Google Scholar

[4] J.L. Grenestedt, K. Tanaka: Scripta Mater. Vol. 40, (1999), p.71.

Google Scholar

[5] A.E. Simone, L.J. Gibson: Acta Mater. Vol. 46 (1998), p.3929.

Google Scholar

[6] Y. Yamada. K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, K. Higashi: Mater. Sci. Eng. Vol. A280, (2000), p.225.

DOI: 10.1002/(sici)1527-2648(200004)2:4<184::aid-adem184>3.0.co;2-w

Google Scholar

[7] Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, K. Higashi: Mater. Sci. Eng., A272, (1999), p.455.

DOI: 10.1023/a:1006677930532

Google Scholar

[8] T.G. Nieh, J. H. Kinney, J. Wadsworth, A.J.C. Ladd: Scripta Mater. Vol. 38, (1998), p.1487.

Google Scholar

[9] J.L. Grenestedt, K. Tanaka: Scripta Mater. Vol. 40, (1999), p.71.

Google Scholar

[10] C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina: Scripta Mater. Vol. 45, (2001), p.1147.

DOI: 10.1016/s1359-6462(01)01132-0

Google Scholar

[11] L.J. Gibson, M.F. Ashby: Cellular Solids, Structure and Properties (Pergamon Press, Oxford, 1988).

Google Scholar

[12] H. Bart-smith, A.F. Bastawros, D.R. Mumm, A.G. Evans, D.J. Sypeck, H.N.G. Wadley: Acta Mater. Vol. 46, (1998), p.3583.

DOI: 10.1016/s1359-6454(98)00025-1

Google Scholar

[13] P.H. Thornton, C.L. Magee: Metall. Trans. Vol. 6A, (1975), p.1253.

Google Scholar

[14] F. Simancik, J. Kovacik, N. Sediakova: Proc. of the 1998 Powder Metall. World Cong. & Exhibit. (European Powder Metall. Association, UK, 5, 1998).

Google Scholar

[15] J. Banhart: Prog. Mater. Sci. Vol. 46, (2001), p.559.

Google Scholar

[16] T. Miyoshi, M. Itoh, T. Mukai, H. Kanahashi, H. Kohzu, S. Tanabe, K. Higashi: Scripta Mater. Vol. 41 (1999), p.1055.

DOI: 10.1016/s1359-6462(99)00255-9

Google Scholar

[17] Y. Sugimura, J. Meyer, M.Y. He, H.B. Smith, J. Grenstedt, A.G. Evans: Acta Mater. Vol. 45, (1997), p.5245.

Google Scholar

[18] N.G. Davis, J. Teisen, C. Schuh, D.C. Dunand: J. Mater. Res. Vol. 16, (2001), p.1508.

Google Scholar

[19] V. Paserin, S. Marcuson, J. Shu, D.S. Willinson: Advanced Engineering Materials, Vol. 6, (2004), p.454.

Google Scholar