Preparation and Characterisation of Open-Cell Microporous Nickel

Abstract:

Article Preview

In the present study, nickel foams with an open cell microporous structure were fabricated by the so-called space-holding particle sintering method, which included the adding of a particulate polymeric material (PMMA). The average pore size of the nickel foams approximated 10.5 μm; and the porosity ranged from 70 % to 80 %. The porous characteristics of the nickel foams were observed using scanning electron microscopy and the mechanical properties were evaluated using compressive tests. For comparison, nickel foams with an open-cell macroporous structure (pore size approximately 1.3 mm) were also presented. Results indicated that the nickel foams with a microporous structure possess enhanced mechanical properties than those with a macroporous structure.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

1833-1838

Citation:

Y. Yamada et al., "Preparation and Characterisation of Open-Cell Microporous Nickel", Materials Science Forum, Vols. 539-543, pp. 1833-1838, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] J. Banhart and J. Baumeister: J. of Mater. Sci., Vol. 33, (1998), p.1431.

[2] S.K. Maiti, L.J. Gibson, M.F. Ashby: Acta Mater. Vol. 32, (1984), p. (1963).

[3] A.E. Simone, L.J. Gibson: Acta Mater. Vol. 46, (1998), p.2139.

[4] J.L. Grenestedt, K. Tanaka: Scripta Mater. Vol. 40, (1999), p.71.

[5] A.E. Simone, L.J. Gibson: Acta Mater. Vol. 46 (1998), p.3929.

[6] Y. Yamada. K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, K. Higashi: Mater. Sci. Eng. Vol. A280, (2000), p.225.

DOI: https://doi.org/10.1002/(sici)1527-2648(200004)2:4<184::aid-adem184>3.0.co;2-w

[7] Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, K. Higashi: Mater. Sci. Eng., A272, (1999), p.455.

DOI: https://doi.org/10.1002/(sici)1527-2648(200004)2:4<184::aid-adem184>3.0.co;2-w

[8] T.G. Nieh, J. H. Kinney, J. Wadsworth, A.J.C. Ladd: Scripta Mater. Vol. 38, (1998), p.1487.

[9] J.L. Grenestedt, K. Tanaka: Scripta Mater. Vol. 40, (1999), p.71.

[10] C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina: Scripta Mater. Vol. 45, (2001), p.1147.

[11] L.J. Gibson, M.F. Ashby: Cellular Solids, Structure and Properties (Pergamon Press, Oxford, 1988).

[12] H. Bart-smith, A.F. Bastawros, D.R. Mumm, A.G. Evans, D.J. Sypeck, H.N.G. Wadley: Acta Mater. Vol. 46, (1998), p.3583.

[13] P.H. Thornton, C.L. Magee: Metall. Trans. Vol. 6A, (1975), p.1253.

[14] F. Simancik, J. Kovacik, N. Sediakova: Proc. of the 1998 Powder Metall. World Cong. & Exhibit. (European Powder Metall. Association, UK, 5, 1998).

[15] J. Banhart: Prog. Mater. Sci. Vol. 46, (2001), p.559.

[16] T. Miyoshi, M. Itoh, T. Mukai, H. Kanahashi, H. Kohzu, S. Tanabe, K. Higashi: Scripta Mater. Vol. 41 (1999), p.1055.

[17] Y. Sugimura, J. Meyer, M.Y. He, H.B. Smith, J. Grenstedt, A.G. Evans: Acta Mater. Vol. 45, (1997), p.5245.

[18] N.G. Davis, J. Teisen, C. Schuh, D.C. Dunand: J. Mater. Res. Vol. 16, (2001), p.1508.

[19] V. Paserin, S. Marcuson, J. Shu, D.S. Willinson: Advanced Engineering Materials, Vol. 6, (2004), p.454.

Fetching data from Crossref.
This may take some time to load.