Computer Simulation of Grain Growth in Three Dimensions by the Phase Field Model with Anisotropic Grain-Boundary Mobilities

Article Preview

Abstract:

The kinetics and topology of grain growth in three dimensions were simulated using a phase-field model with anisotropic grain-boundary mobilities. In order to perform large scale calculations we applied both modifications of algorithms and parallel coding techniques to the Fan and Chen's phase-field algorithm. Kinetics of abnormal grain growth is presented. It is observed that the grains of a minor component which are at the beginning surrounded preferentially by boundaries of high mobility grow faster than the grains of a major component until the texture reverses completely. Additionally, topological results of grain structures, such as grain size distributions and grain face distributions, are discussed

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

2437-2442

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Atkinson HV: Acta Metall. Vol. 36 (1988), pp.469-401.

Google Scholar

[2] Weaire D and Glazier JA: Materials Science Forum Vol. 94-96(1992), pp.27-38.

Google Scholar

[3] Hillert M: Acta Metall. Vol. 13 (1965), pp.227-238.

Google Scholar

[4] Burke JE and Turnbull D: Prog. Metal Phys. Vol. 3 (1952), pp.220-292.

Google Scholar

[5] Louat NP: Acta Metall. Vol. 22 (1974), pp.721-724.

Google Scholar

[6] Thompson CV: Solid State Phys. Vol. 55 (2001), pp.269-314.

Google Scholar

[7] Anderson MP, Srolovitz DJ, Grest GS, Sahni PS: Acta Metall. Vol. 32 (1984), pp.783-791.

Google Scholar

[8] Kawasaki K, Nagai T, Nakashima K: Phil. Mag. Vol. B-60 (1989), pp.399-421.

Google Scholar

[9] Frost HJ, Thompson CV, Howe CL, Whang J: Scripta Metal Mater. Vol. 22 (1988), pp.65-70.

Google Scholar

[10] Telley H, Liebling TM, Mocellin A: Phil. Mag. B-73 (1996), pp.395-408.

Google Scholar

[11] Chen L-Q and Yang W: Phys. Rev. Vol. B-50 (1994), pp.15752-15756.

Google Scholar

[12] Steinbach I, Pezzolla F, Nestler B, Seeβelberg M, Prieler R, Schmitz GJ: Physica Vol. D -94 (1996), pp.135-147.

DOI: 10.1016/0167-2789(95)00298-7

Google Scholar

[13] Anderson MP, Grest GS, Srolovitz DJ: Phil. Mag. Vol. B-59 (1989), pp.293-329.

Google Scholar

[14] Krill CE and Chen L-Q: Acta Mater. Vol. 50 (2002), pp.3057-3073.

Google Scholar

[15] Suwa Y, Saito Y, Onodera H: Submitted to Comp. Mater. Sci.

Google Scholar

[16] Abbruzzese G, Lücke K: Acta metal. Vol. 34 (1986), pp.905-914.

Google Scholar

[17] Eichelkraut H, Abbruzzese G, Lücke K: Acta metal. Vol. 36 (1988), pp.55-68.

Google Scholar

[18] Humphreys FJ: Acta mater. Vol. 45 (1997), pp.4231-4240.

Google Scholar

[19] Mehnert K, Klimanek P: Comp. Mater. Sci. Vol. 7 (1996), pp.103-108.

Google Scholar

[20] Mehnert K, Klimanek P: Comp. Mater. Sci. Vol. 9 (1997), pp.261-266.

Google Scholar

[21] Ivasishin OM, Shevchenko SV, Vasiliev NL, Semiatin SL: Acta Mater. Vol. 51 (2003), pp.1019-1034.

DOI: 10.1016/s1359-6454(02)00505-0

Google Scholar

[22] Fan D and Chen L-Q: Acta Mater. Vol. 45 (1997), pp.611-632.

Google Scholar

[23] Ma N, Kazaryan A, Dregia DA, Wang Y: Acta Mater. Vol. 52 (2004), pp.3869-3879.

Google Scholar