Computer Simulation of Grain Growth in Three Dimensions by the Phase Field Model with Anisotropic Grain-Boundary Mobilities

Abstract:

Article Preview

The kinetics and topology of grain growth in three dimensions were simulated using a phase-field model with anisotropic grain-boundary mobilities. In order to perform large scale calculations we applied both modifications of algorithms and parallel coding techniques to the Fan and Chen's phase-field algorithm. Kinetics of abnormal grain growth is presented. It is observed that the grains of a minor component which are at the beginning surrounded preferentially by boundaries of high mobility grow faster than the grains of a major component until the texture reverses completely. Additionally, topological results of grain structures, such as grain size distributions and grain face distributions, are discussed

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

2437-2442

Citation:

Y. Suwa et al., "Computer Simulation of Grain Growth in Three Dimensions by the Phase Field Model with Anisotropic Grain-Boundary Mobilities", Materials Science Forum, Vols. 539-543, pp. 2437-2442, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] Atkinson HV: Acta Metall. Vol. 36 (1988), pp.469-401.

[2] Weaire D and Glazier JA: Materials Science Forum Vol. 94-96(1992), pp.27-38.

[3] Hillert M: Acta Metall. Vol. 13 (1965), pp.227-238.

[4] Burke JE and Turnbull D: Prog. Metal Phys. Vol. 3 (1952), pp.220-292.

[5] Louat NP: Acta Metall. Vol. 22 (1974), pp.721-724.

[6] Thompson CV: Solid State Phys. Vol. 55 (2001), pp.269-314.

[7] Anderson MP, Srolovitz DJ, Grest GS, Sahni PS: Acta Metall. Vol. 32 (1984), pp.783-791.

[8] Kawasaki K, Nagai T, Nakashima K: Phil. Mag. Vol. B-60 (1989), pp.399-421.

[9] Frost HJ, Thompson CV, Howe CL, Whang J: Scripta Metal Mater. Vol. 22 (1988), pp.65-70.

[10] Telley H, Liebling TM, Mocellin A: Phil. Mag. B-73 (1996), pp.395-408.

[11] Chen L-Q and Yang W: Phys. Rev. Vol. B-50 (1994), pp.15752-15756.

[12] Steinbach I, Pezzolla F, Nestler B, Seeβelberg M, Prieler R, Schmitz GJ: Physica Vol. D -94 (1996), pp.135-147.

[13] Anderson MP, Grest GS, Srolovitz DJ: Phil. Mag. Vol. B-59 (1989), pp.293-329.

[14] Krill CE and Chen L-Q: Acta Mater. Vol. 50 (2002), pp.3057-3073.

[15] Suwa Y, Saito Y, Onodera H: Submitted to Comp. Mater. Sci.

[16] Abbruzzese G, Lücke K: Acta metal. Vol. 34 (1986), pp.905-914.

[17] Eichelkraut H, Abbruzzese G, Lücke K: Acta metal. Vol. 36 (1988), pp.55-68.

[18] Humphreys FJ: Acta mater. Vol. 45 (1997), pp.4231-4240.

[19] Mehnert K, Klimanek P: Comp. Mater. Sci. Vol. 7 (1996), pp.103-108.

[20] Mehnert K, Klimanek P: Comp. Mater. Sci. Vol. 9 (1997), pp.261-266.

[21] Ivasishin OM, Shevchenko SV, Vasiliev NL, Semiatin SL: Acta Mater. Vol. 51 (2003), pp.1019-1034.

[22] Fan D and Chen L-Q: Acta Mater. Vol. 45 (1997), pp.611-632.

[23] Ma N, Kazaryan A, Dregia DA, Wang Y: Acta Mater. Vol. 52 (2004), pp.3869-3879.