Modelling the Transformations Kinetics from Work-Hardened Austenite in a TRIP Steel

Abstract:

Article Preview

Using physical concepts, an integrated transformation model to describe the kinetics of ferrite and bainite formation from work-hardened austenite has been developed for a Mo-TRIP steel. The ferrite sub-model assumes a mixed-mode kinetics under paraequilibrium condition and accounts explicitly for the effect of alloying elements by considering their interaction with the moving ferrite-austenite interface. To predict the onset of bainite formation, which corresponds to the cessation of ferrite reaction along a given cooling path, a criterion based on a critical driving pressure is formulated. Regarding the kinetics of the subsequent bainite reaction, the proposed model adopts the Zener-Hillert diffusional approach. The proposed integrated model has been employed to describe the continuous cooling transformation kinetics for a 0.19C-1.5Mn-1.6Si- 0.2Mo (wt%) TRIP steel that had previously been subjected to a systematic experimental study. The predictive capabilities of the model and the challenges for further model improvements are delineated.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

4339-4344

DOI:

10.4028/www.scientific.net/MSF.539-543.4339

Citation:

F. Fazeli and M. Militzer, "Modelling the Transformations Kinetics from Work-Hardened Austenite in a TRIP Steel", Materials Science Forum, Vols. 539-543, pp. 4339-4344, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.