Prediction of Microstructure and Distribution of Solute in Al-Zn-Mg Non-Dilute Alloys

Abstract:

Article Preview

The microstructure of directional solidified Al-Zn-Mg alloys is characterized and predicted by means of thermal analysis data, multicomponent equations for dendrite growth and data from ternary AlZnMg phase diagram. The resulting microstructure consists of α-Al dendrites with τ precipitates and eutectic in interdendritic regions. Predictions show that at growth velocities up to 9 x 10-4 m/s, the α-Al and τ intermetallic grew simultaneously. Predictions for solute concentration according to the model for dendrite solidification of multicomponent alloys with unequal liquid diffusion coefficients show a good agreement with experimental results.

Info:

Periodical:

Edited by:

H. Balmori-Ramirez, J.G. Cabañas-Moreno, H.A. Calderon-Benavides, K. Ishizaki and A. Salinas-Rodriguez

Pages:

73-78

Citation:

J. L. Soto et al., "Prediction of Microstructure and Distribution of Solute in Al-Zn-Mg Non-Dilute Alloys", Materials Science Forum, Vol. 560, pp. 73-78, 2007

Online since:

November 2007

Export:

Price:

$38.00

[1] Jones, H.: Scripta Materialia Vol. 45 (2001), p.95.

[2] Ivantsov, G. P. and Doklady Akad. Nauk.: Vol. 58 (1947), p.567.

[3] Kurz, W., Giovanola, B. and Trivedi, R., Acta Metall. Vol 29 (1981), p.823.

[4] Esaka, H. and Kurz, W., J. Cryst. Growth: Vol. 69 (1984) p.362.

[5] Langer, J. S. and Muller-Krumbhaar, H., Acta Metall.: Vol. 26 (1976), p.1681.

[6] Gäumann, M., Trivedi, R. and Kurz, W., Mat. Sci. Eng. A Vol. 226 (1997), p.763.

[7] Bobadilla, M., Lacaze, J. And Lesoult, G., J. of Cryst. Growth, 1988; 89: 531.

[8] Rappaz, M. and Boettinger W. J., Acta. Mater., 1999; 47: 3205.

[9] Hunt, J. D., Mat. Sci. and Eng., 65(1984) 75.

[10] Kurz, W., Z. Metallk., 1978, 69, 433.

[11] Hunt, J. D. and Lu, S. Z., Met. Mater. Trans, 1991, 27A, 611.

[12] Jackson, K. A. and Hunt, J. D., Trans. Metall, Soc. AIME, 1966, 236, 1129.

[13] Kurz, W. and Fisher, D. J., Int. Metall. Rev, 1979, 24, 177.

[14] Rappaz, M. and Boettinger, W. J., Acta Mater., 1999, 47, 3105.

[15] Bobadilla, M., Lacaze, J. And Lesoult, G., J. Cryst. Growth, 1988, 89, 531.

[16] Rappaz, M., David, S. A., Viutek, J. M. and Boatner, L. A., Metall. Trans., 1990, 21A, 1767.

[17] Petrov, D. A. Ternary Alloys, ed. G. Petzow and G. E. Effemberg (VCH Weinheim, Germany), 1986, 3, 57.

[18] Peterson, N. L. and Rothman S. J., Phys. Rev. B: Solid State, 1970, 1, 3264.

[19] Deryagin, B. V. and Friedland, R. M., Zh. Tekh. Fiz., 1984, 18, 1443.

[20] Liang, H. and Chang, Y. A., Mat. Mater. Trans. 1997, 28A, 1725.

[21] Rappaz, M. and Thévoz, Ph., Acta Metall., 1987; 35: 1478.

[22] Rappaz, M. and Thévoz, Ph., Acta Metall., 1987; 35: 2929.

[23] Brody, H. D. Flemings, M. C., Metal. Trans. A, 1981; 12: 965.

[24] Gonzalez, C., Alvarez, O., Genesca, J. and Juárez-Islas, J. A: Met. Trans. A, 2003; 34: 2991.