Mechanical Properties of Ti–6Al–4V Titanium Alloy with Submicrocrystalline Structure Produced by Multiaxial Forging

Article Preview

Abstract:

A comparative investigation of mechanical properties of Ti–6Al–4V titanium alloy with coarse-grained (400 m), microcrystalline (10 µm) and submicrocrystalline (0.4 µm) structures in the temperature range 20–500°C has been carried out. The submicrocrystalline structure was obtained by multiaxial isothermal forging. The alloys with the coarse-grained and microcrystalline structures were used in a heat-strengthened condition. The microstructure refinement increases both the strength and fatigue limit of the alloy at room temperature by about 20%. The strength of the submicrocrystalline alloy is higher than that of the microcrystalline alloy in the range 20 - 400°C. Long-term strength of the submicrocrystalline specimens below 300°C is also considerably higher than that of the other conditions. However, the creep strength of the submicrocrystalline alloy is slightly lower than that of the heat-strengthened microcrystalline alloy already at 250°C. The impact toughness in submicrocrystalline state is lower especially in the samples with introduced cracks. Additional surface modification of submicrocrystalline alloy by ion implantation gives a considerable increase in the fatigue limit. Advantages of practical application of submicrocrystalline titanium alloys produced by multiaxial isothermal forging have been evaluated.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 584-586)

Pages:

783-788

Citation:

Online since:

June 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation: