Approach to Optimum Layer Structure of Functionally Graded Materials

Article Preview

Abstract:

Minimum interlayer numbers of functionally graded materials (FGMs) are studied based on the empirical analysis of thermal stress due to the differences in the thermal expansion coefficient  and temperature T between sintering and room temperatures. It is found the maximum ,   and the minimum interlayer number necessary to produce a NiCr / Fly ash FGM structure without interface cracking were 4.0×10-6 K-1, 1080 K, 0.043 and 2, respectively. The condition  < 0.043 was derived and confirmed to be valid for available FGM systems.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 631-632)

Pages:

29-34

Citation:

Online since:

October 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Kawasaki and R. Watanabe: Ceramics International, Vol. 23 (1997), p.73.

Google Scholar

[2] M. M. Gasik: Materials Science Forum Vol. 423-425(2003), p.17.

Google Scholar

[3] S. Uemura: Materials Science Forum Vol. 423-425(2003), p.1.

Google Scholar

[4] A. Kawasaki and R. Watanabe: Nippon Kinzoku Gakkai-si Vol. 51 (1987), p.525.

Google Scholar

[5] Functionally Graded Materials Database on http: /www. fgms. net.

Google Scholar

[6] G. Kaneko, M. Mori, H. Kitagawa, K. Hasezaki, and H. Tanaka: Journal of the Japan Society of Powder and powder Metallurgy, Vol. 53 (2006), p.503.

Google Scholar

[7] K. Hasezaki, A. Nakashita, G. Kaneko and H. Kakuda: Materials Transactions, Vol. 48 (2007) p.3066.

Google Scholar

[8] K. Nakano and S. Nishida: American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP Vol. 302(1995), p.283.

Google Scholar

[9] K. Atarashiya: Journal of Materials Processing Technology Vol. 54(1995), p.54.

Google Scholar

[10] C. Chu, Z. Yin, J. Zhu, S. Wang and P. Lin: Functional Graded Materials 2000, Ceramic Transaction, Vol. 112(2001), p.81.

Google Scholar

[11] M. Yuki, Y. Nakanishi, A. Kawasaki and R. Watanabe: Keisyazairyou Symposium (FGM'93), (1993), p.47.

Google Scholar

[12] H. Yamaoka, M. Yuki, K. Tahara, T. Irisawa and R. Watanabe: Keisyazairyou Symposium (FGM'91), (1991), p.73.

Google Scholar

[13] L. M. Zhang, R. Yuan, M. Oomori and T. Hirai: Journal of Materials Science Letters Vol. 14(1995), p.1620.

Google Scholar

[14] P. Hvizdos, D. Jonsson, M. Anglada, G. Anne and O. Van Der Biest: Journal of the European Ceramics Society Vol. 27(2007), p.1365.

Google Scholar

[15] C. Kawai and S. Wakamatsu: Journal of Materials Science Vol. 31(1996), p.2165.

Google Scholar

[16] M. Katoh, H. Hoita and T. Igarashi: Keisyakinouzairyou-ronnbuusyu (FGM'98), (1998), p.97 Acknowledgment We thank Sakae Mishima, Yoshiaki Suzuki, and Kazuki Kikui of the Industrial Research Institute of Tottori Prefecture for mechanical testing.

Google Scholar