The Effects of Solidification Conditions and Heat Treatment on the Microstructure and Mechanical Properties of EN-AC 44400 Alloy

Article Preview

Abstract:

Improved mechanical and physical properties of an Al-Si alloy as a well-known casting alloy is strongly dependent upon the morphology of silicon particles, Al grains and also type of intermetallics which are in turn a function of alloy composition, solidification rate and heat treatment. This study aims at investigating the influence of the different solidification conditions (high pressure die, gradient and sand cast) and heat treatment on the microstructure (dendrite parameters, silicon particle morphology, intermetallic compounds), mechanical properties and fracture surface appearance of Al- 9Si- 4Mn alloy. To identify the features of microstructure and fracture surface analysis, a combination of optical metallography, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) have been employed. The results show that the cooling rate has a strong effect on the evolution of intermetallics, morphology of the silicon and dendrite parameters.

You might also be interested in these eBooks

Info:

[1] W. F. Smith: Structure and Properties of Engineering Alloys, McGraw-Hill publication company, 2nd Edition, (1992).

Google Scholar

[2] Q. G. Wang, C.J. Davidson: J. Mater. Sci. Vol 36 (2001), P739-750.

Google Scholar

[3] S. G. Shabestari, F. Shahri: J. Mater. Sci. Vol 39 (2004), P2023-(2032).

Google Scholar

[4] Cameron M. Dennis, john A. Taylor and Arne K. Dahle: Scripta. Mater. Vol 53(2005), P 955958.

Google Scholar

[5] E. Cadirli, M. Gunduz: J. Mater. Sci. Vol 35(200) P. 3837-3848.

Google Scholar

[6] M. Warmuzek, J. Sieniawski, K. Wicher, G. Mrovka: J. Mater. Proc. Tech. Vol175 (2006) P. 421- 426.

Google Scholar

[7] M. A. Moustafa: J. Mater. Proc. Tech. XXX (2008) XXX-XXX.

Google Scholar

[8] M. Ozenbas, H. Guler: Chem. Comm. Vol 190(2003) P. 911-924.

Google Scholar

[9] S. G. Shabestari: Mater. Sci. Eng. Vol. A383 (2004) P. 289-298.

Google Scholar

[10] M. V. Kral P.N.H. Nakashima D.R.G. Mitchell: Met. Mater. Trans. A Vol 37A (2006) P. 19871997.

Google Scholar

[11] L.Y. Zhang: [J. Mater. Proc. Tech. (2008).

Google Scholar

[12] C.L. XU, H. Y. Wang: Mater. Sci. Eng. Vol. A417(2006) P. 275-280.

Google Scholar

[13] B. Dutta, M. Rettenmayer: Mater. Sci. Eng. VolA283 (2000) P. 218-224.

Google Scholar

[14] S. Seifeddine, S. Johansson, I.L. Svensson: Mater. Sci. Eng. Vol. A xxx (2008).

Google Scholar

[15] F. Ochoa, J. J. Williams: J. Elec. Mater. Vol 32(2003).

Google Scholar

[16] Z. Li., A. M. Samuel: Mater. Sci. Eng. Vol. A307(2004) P. 96-110).

Google Scholar

[17] B. Closset and J. Gruzleski: AFS Transactions 89 (1981) 801.

Google Scholar

[18] 18 S. Shivkumar. R. Ricci, JR. and D. Apellian: ibid. (1990) 63-70.

Google Scholar

[19] Metals Handbook: Heat treatment, 9th ed., Vol. 4, (1988).

Google Scholar

[20] J. Bäckman, Licentiate Thesis no. 794, Jonkoping University, School of Engineering, (1999).

Google Scholar

[21] L. Van Vlack: Elements of Materials Science and Engineering, Adison- Wesley publication, (1989).

Google Scholar