Phase Separation in Polymer Dispersed Liquid Crystal Device

Article Preview

Abstract:

Polymer dispersed liquid crystal device was prepared by the method of polymerization induced phase separation. The phase separation in our PDLC device was characterized by a polarized optical microscope. Our results demonstrated that the phase-separated droplets in our PDLC device presented the four-brush radial, bipolar and axial configurations. Furthermore, these configurations were simulated by mathematica tool

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 663-665)

Pages:

763-766

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Dierking: Chem. Phys. Chem. Vol. 2 (2001), pp.59-62.

Google Scholar

[2] J. L. Fergason: US Patent, Vol. 4 (1984), p.435. US Patent 4435 047.

Google Scholar

[1] Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.119.

Google Scholar

[2] M.A. Green: High Efficiency Silicon Solar Cells (Trans Tech Publications, Switzerland 1987).

Google Scholar

[3] Y. Mishing, in: Diffusion Processes in Advanced Technological Materials, edtied by D. Gupta Noyes Publications/William Andrew Publising, Norwich, NY (2004), in press.

Google Scholar

[4] G. Henkelman, G. Johannesson and H. Jónsson, in: Theoretical Methods in Condencsed Phase Chemistry, edited by S.D. Schwartz, volume 5 of Progress in Theoretical Chemistry and Physics, chapter, 10, Kluwer Academic Publishers (2000).

Google Scholar

[5] R.J. Ong, J.T. Dawley and P.G. Clem: submitted to Journal of Materials Research (2003).

Google Scholar

[6] P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. Ashley, U.S. Patent 6, 231, 666. (2001).

Google Scholar

[7] Information on.

Google Scholar

[3] K. Amundson, A. Blaaderen and P. Wiltzius: Phys. Rev. E, Vol. 53 (1997), p.1646.

Google Scholar

[4] Q. –L Ma and Y. M. Huang: Key Eng. Mater. Vols. 428-429 (2010), p.228.

Google Scholar

[5] Q. –L Ma and Y. M. Huang: Key Eng. Mater. Vols. 428-429 (2010), p.345.

Google Scholar

[6] Q. –L Ma and Y. M. Huang: Key Eng. Mater. Vols. 428-429 (2010), p.398.

Google Scholar

[7] B. -G. Zhai and Y. M. Huang: Key Eng. Mater. Vols. 428-429 (2010), p.363.

Google Scholar

[8] S. A. Carter, J. D. LeGrange, W. White, J. Boo and P. Wiltzius: J. Appl. Phys., Vol. 81 (1997), p.5992.

Google Scholar

[9] Y. G. Marinov, G. B. Hadjichristov, and A. G. Petrov: Cryst. Res. Technol., Vol. 44 (2009), p.870. . Decker: Macromol. Rapid Comm., Vol. 23 (2003), p.1067.

Google Scholar

[2] B.T. Hong, K.S. Shin and D.S. Kim: J. Appl. Poly. Sci., Vol. 98 (2005), p.1180.

Google Scholar

[3] Y. Morii, T. Shin, F. Matsukawa, K. Haruna and K. Teramoto: Electronics. Commun. Japn., Vol. 83 (2000), p. (2000)21.

Google Scholar