Molecular Simulation of Hydrogen Storage on All-Silica ZSM-5 Zeolite

Article Preview

Abstract:

Grand Canonical Monte Carlo (GCMC) method was employed to simulate the adsorption properties of molecular hydrogen on crossing the critical temperature in all-silica ZSM-5 zeolite in this paper. The results indicated that the adsorbed amounts of hydrogen increased with decreasing temperatures and increasing pressures. The highest hydrogen uptake value is 2.24 wt% at 25 K and 10000 kPa. By comparing the variation of the hydrogen adsorption isotherms on crossing the critical temperature, it is shown that the micropore filling and capillary condensation were the main adsorption mechanism under the critical temperature of hydrogen, and the micropore filling was the adsorption mechanism above the critical temperature. The results and data of hydrogen adsorption properties obtained from the simulations are theoretically significant for understanding of the mechanism of hydrogen storage on microporous zeolites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 663-665)

Pages:

934-938

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Wang, W.C. Wang, S.P. Huang, J.W. Teng and Z.K. Xie: Chin. J. Proc. Eng. Vol. 4 (2007), p.661.

Google Scholar

[2] A. Hirotani and K. Mizukami: Appl. Surf. Sci. Vol. 120 (1997), p.81.

Google Scholar

[3] T.C. Golden and S. Sircar: J. Colloid Interface Sci. Vol. 162 (1994), p.182.

Google Scholar

[4] X.M. Du and E.D. Wu: Chin. J. Mater. Res. Vol. 20 (2006), p.591.

Google Scholar

[5] Information on http: /topaz. ethz. ch.

Google Scholar

[6] Z. Lai, M. Tsapatsis and J.P. Nicolich: Adv. Funct. Mater. Vol. 14 (2004), p.716.

Google Scholar

[7] A.W.C. van den Berg, S.T. Bromley, N. Ramsahye and T. Maschmery: J. Phys. Chem. B. Vol. 108 (2004), p.5088.

Google Scholar

[8] J.G. Vitillo, G. Ricchiardi, G. Spoto and A. Zecchina: Phys. Chem. Chem. Phys. Vol. 7 (2005), p.3948.

DOI: 10.1039/b510989b

Google Scholar

[9] S.H. Jhung, J.W. Yoon, S.J. Lee and J.S. Chang: Chem. Eur. J. Vol. 13 (2007), p.6502.

Google Scholar

[10] F. Darkrim, A. Asdin and P. Malbrunot: J. Chem. Phys. Vol. 112 (2000), p.5991.

Google Scholar

[11] H. Frost, T. Duren and R.Q. Suurr: J. Phys. Chem. B. Vol. 110 (2006), p.9565.

Google Scholar

[12] F. Darkrim, V. Jean, P. Malbrunot and D. Levesque: J. Phys. Chem. Vol. 110 (1999), p.4020.

Google Scholar

[13] Q.F. Ma: Practical Handbook of Thermophysical Properties (China Agricultural Machinery Press, Beijing 1986).

Google Scholar

[14] S. Ozawa, S. Kusumi and Y. Ogino: J. Colloid Interface Sci. Vol. 56 (1976), p.83.

Google Scholar

[15] K. Kaneko and K. Murata: Adsorption Vol. 3 (1997), p.197.

Google Scholar

[16] P.G. Menon: Chem. Rev. Vol. 68 (1968), p.277.

Google Scholar