Influence of Atmospheric Gases Present in the Pores of MCM-41 on Lifetime of Ortho-Positronium

Article Preview

Abstract:

The modification of the extended Tao-Eldrup model accounting ortho-positronium quenching in air is presented. Taking into account quenching by oxygen molecules adsorbed on the surface of porous material gives reasonable agreement between results of the model and the experimental positron annihilation lifetime spectroscopy data. Pore size distributions calculated using this model from the spectra for MCM 41 mesoporous sieve obtained in air, oxygen or vacuum are compared and discussed taking into account effect of ortho-positronium migration from small open pores to the larger ones. The rates of ortho-positronium quenching by air (47.2 µs-1 MPa 1), oxygen (220 µs-1 MPa-1) or nitrogen (1.7 µs-1 MPa-1) obtained from pressure dependences of the lifetimes observed in MCM 41 agree reasonably with the experimental results of other authors, if the correction for oxygen adsorbed on the surface is applied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-128

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Goldanskii, A. Mokrushin, A. Tatur, V. Shantarovich: Appl. Phys. A: Mater. Sci. Process. Vol. 5 (1975), p.379.

Google Scholar

[2] S. Chuang, S. Tao: Appl. Phys. A: Mater. Sci. Process. Vol. 3 (1974), p.199.

Google Scholar

[3] R. Zaleski, J. Goworek, A. Borówka, A. Kierys, M. Wiśniewski in: Characterisation of Porous Solids VIII, edited by: N. Seaton, F. R. Reinoso, P. Llewellyn, S. Kaskel, RSC Publishing, Cambridge, (2009), pp.400-407.

DOI: 10.1039/9781847559418-00400

Google Scholar

[4] T. Goworek, K. Ciesielski, B. Jasinska, J. Wawryszczuk: Chem. Phys. Vol. 230 (1998), p.305.

Google Scholar

[5] K. Sudarshan, D. Dutta, S. K. Sharma, A. Goswami, P. K. Pujari: J. Phys.: Condens. Matter Vol. 19 (2007), p.386204.

DOI: 10.1088/0953-8984/19/38/386204

Google Scholar

[6] R. Zaleski, J. Wawryszczuk, T. Goworek: Radiat. Phys. Chem. Vol. 76 (2007), p.243.

Google Scholar

[7] Y. Belmabkhout, A. Sayari: Chem. Eng. Sci. Vol. 64 (2009), p.3729.

Google Scholar

[8] M. Grün, K. K. Unger, A. Matsumoto, K. Tsutsumi: Microporous Mesoporous Mater. Vol. 27 (1999), p.207.

Google Scholar

[9] A. Shukla, M. Peter, L. Hoffmann: Nucl. Instrum. Methods Phys. Res., Sect. A Vol. 335 (1993), p.310.

Google Scholar

[10] J. Kansy: Nucl. Instrum. Methods Phys. Res., Sect. A Vol. 374 (1996), p.235.

Google Scholar

[11] A. D. Mokrushin, B. M. Levin, V. I. Goldanskii, A. D. Tsyganov, I. I. Bardyshev: Russ. J. Phys. Chem. Vol. 46 (1972), p.368−371.

Google Scholar

[12] T. L. Dull, W. E. Frieze, D. W. Gidley, J. N. Sun, A. F. Yee: The Journal of Physical Chemistry B Vol. 105 (2001), p.4657.

Google Scholar

[13] G. J. Celitans, J. H. Green: Proceedings of the Physical Society Vol. 83 (1964), p.823.

Google Scholar

[14] B. Hopkins, T. W. Zerda: Phys. Lett. A Vol. 145 (1990), p.141.

Google Scholar

[15] N. Shinohara, N. Suzuki, T. Chang, T. Hyodo: Phys. Rev. A Vol. 64 (2001), p.042702.

Google Scholar

[16] R. Zaleski: EELViS, http: /eelvis. sourceforge. net, Retrieved: 14 Jul. (2010).

Google Scholar

[17] R. Zaleski, W. Stefaniak, M. Maciejewska, J. Goworek: J. Colloid Interface Sci. Vol. 343 (2010), p.134.

Google Scholar

[18] R. Zaleski, J. Goworek, A. Kierys: physica status solidi (c) Vol. 4 (2007), p.3814.

Google Scholar

[19] T. C. Griffith, G. R. Heyland: Phys. Rep. Vol. 39 (1978), p.169.

Google Scholar

[20] S. C. Sharma, J. D. McNutt: Phys. Rev. A Vol. 18 (1978), p.1426.

Google Scholar