Microstructure Evolution and the Influence of Hydrofluoric Acid Treatment on the Surfaces of Commercial Pure Ti after ECAE

Article Preview

Abstract:

Commercial pure Ti (CP Ti) was subjected to the effects of ECAE processes at 673 K by Bc path. The initial 80~100 μm equiaxed and coarse grains were elongated along the shearing force direction of ECAE and refined to ~300 nm after the eight passes ECAE. Surface roughness of CP Ti samples and contact angle of deionized water on CP Ti surface, with coarse or ultrafine grains, modified by polish and HF treatment have been investigated. It is found that CP Ti substrates with ultrafine grains show a significantly lower water contact angle and higher surface energy compared with coarse-grains. HF treatment on pure Ti surfaces brings higher surface roughness and hydrophobicity than polish treated. These results reveal that the combination of ultrafine grains and higher surface roughness, hydrophobic allows a favorable condition for cell growth and bone generation on the surfaces of pure Ti after ECAE process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

1195-1200

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.M. Segal, USSR Patent No. 575892, (1977).

Google Scholar

[2] J. Wang, Z. Horita, M. Furukawa, et al: J. Mater. Res. 8 (1993), p.2810.

Google Scholar

[3] Z. Fan, C. Xie: Mater. Lett. 62 (2008), p.800.

Google Scholar

[4] H. Sehitoglu, J. Jun, X. Zhang, I. Karaman, et al: Acta Mater. 49 (2001), p.3609.

Google Scholar

[5] Z. Fan, C. Xie: Mater. Sci. Forum. 561-565 (2007), p.2313.

Google Scholar

[6] Y.J. Chen, Y.J. Li, J.C. Walmsley, et al: Mater. Sci. Eng. A. 527 (2010), p.789.

Google Scholar

[7] H. Jiang, Z. Fan, C. Xie: Mater. Sci. Eng. A. 485 (2008), p.409.

Google Scholar

[8] Y.J. Chen, Q. D. Wang, H. J. Roven, et al: Scripta Mater. 58 (2010), p.311.

Google Scholar

[9] A. Mussi, J.J. Blandin, L. Salvo, E.F. Rauch: Acta Mater. 54 (2006), p.3801.

Google Scholar

[10] Y. Chen, Q. Wang, J. Peng, et al: Mater. Sci. Forum. 503-504 (2006), p.865.

Google Scholar

[11] Y.G. Ko, D.H. Shin, K.T. Park et al: Scripta Mater. 54 (2006), p.1785.

Google Scholar

[12] J. W. Park, Y. J. Kim, C. Hee, et al: Acta Biomater. 5 (2009), p.3272.

Google Scholar

[13] X. Liu, P. Chu, C. Ding: Mater. Sci. Eng. R. in press (2010) doi: 10. 1016/j. mser. 2010. 06. 013.

Google Scholar

[14] G. Balasundaram, T. J. Webster: J. Mater. Chem. 16 (2006), p.3737.

Google Scholar

[15] J. Chang, J. Yoon, G. Kim: Scripta Mater. 45 (2001), p.347.

Google Scholar

[16] S. Faghihi, F. Azari, A.P. Zhilyaev et al: Biomaterials. 28 (2007), p.3887.

Google Scholar

[17] T.J. Webster, J.U. Ejiofor: Biomaterials. 25 (2004), p.4731.

Google Scholar

[18] T.N. Kim, A. Balakrishnan, B.C. Lee et al.: J. Mater. Sci. Mater. Med. 19 (2008), p.553.

Google Scholar

[19] M. Monjo, S.F. Lamolle, S.P. Lyngstadaas et al: Biomaterials. 29 (2008), p.3771.

Google Scholar

[20] J.E. Ellingsen:J. Mater. Sci. Mater. Med. 6 (1995), p.749.

Google Scholar

[21] S.F. Lamolle, M. Monjo, S.P. Lyngstadaas et al: J. Biomed. Mater. Res. A. 88A (2009), p.581.

Google Scholar

[22] S. F. Lamollea, M. Monjoa, M. Ruberta, et al: Biomaterials. 30 (2009), p.736.

Google Scholar