Zinc Ferrite Powder Synthesized by High Energy Reactive Ball Milling

Article Preview

Abstract:

The nanocrystalline zinc ferrite (ZnFe2O4) powder was synthesized by high energy reactive ball milling (RM) in a planetary mill. As starting materials a mixture of commercial zinc oxide (ZnO) powder and iron oxide (Fe2O3) powder was used. The starting mixture was milled for different periods of time, up to 30 h. The milled powders were annealed for 4 h at 350 oC in order to eliminate the internal stress and to finish the solid state reaction of ferrite formation. Zinc ferrite formation was investigated by X-ray diffraction. The obtained powder has a mean crystallite size of 12 nm after 20 h of milling. Using scanning electron microscopy (SEM) the particle morphology was studied. Particles size range of the powders was also determined using a laser particle size analyser.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-152

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Šepelák, K. Jancke, J. Richter-Mendau, U. Steinike, D. -CHR. Uecker and A. YU. Rogachev, Kona Vol. 12 (1994), p.87.

DOI: 10.14356/kona.1994015

Google Scholar

[2] H. Ehrhardt, S.J. Campbell, M. Hofmann, J. Mater. Sci. Vol. 39 (2004), p.5057.

Google Scholar

[3] H. Ehrhardt, S.J. Campbell, M. Hofmann, Scripta Materialia Vol. 48 (2003), p.1141.

Google Scholar

[4] T.M. Clark, B.J. Evans, IEEE Trans. Mag. Vol. 33 (1997), p.3745.

Google Scholar

[5] J. Plocek, A. Hutlova, D. Niznansky, J. Bursik, J.L. Rehspringer, Z. Micka, J. Non-Cryst. Solids Vol. 315 (2003), p.70.

DOI: 10.1023/a:1020762311902

Google Scholar

[6] J.L. Martin de Vidales, A. Lopez-Delgado, E. Vila, F.A. Lopez, J. Alloys Compd. Vol. 287 (1999), p.276.

Google Scholar

[7] S.H. Yu, T. Fujino, M. Yoshimura, J. Magn. Magn. Mater. Vol. 256 (2003), p.420.

Google Scholar

[8] Sadan Ozcan, Burak Kaynar, Musa Mutlu Can, Tezer Fırat, Mater. Sci. Eng. B Vol. 121 (2005), p.278.

Google Scholar

[9] N.S. Gajbhiye, U. Bhattacharya, V.S. Darshane, Thermochim. Acta Vol. 264 (1995), p.219.

Google Scholar

[10] V. Šepelák, S. Wiβmann, K.D. Becker, J. Magn. Magn. Mater. Vol. 203 (1999), p.135.

Google Scholar

[11] J. S. Jiang, X. L. Yang, L. Gao, J. K. Guo J. Z. Jian, Nanostruct. Mater. Vol. 12 (1999) p.143.

Google Scholar

[12] G.F. Goya, H.R. Rechenberg, J. Magn. Magn. Mater. Vol. 203 (1999), p.141.

Google Scholar

[13] H. Ehrhardt, S.J. Campbell, M. Hofmann, J. Alloys Compd. Vol. 339 (2002), p.255.

Google Scholar

[14] I. Chicinaş, J. Optoelectron. Adv. Mater. Vol. 8 (2006), 439-448.

Google Scholar

[15] V. Šepelák, I. Bergmann, S. Kips, K. D. Becker, Z. Anorg. Allg. Chem. Vol. 631 (2005), p.993.

Google Scholar

[16] I. Chicinaş, V. Pop, O. Isnard, J.M. Le Breton, J. Juraszek, J. Alloys Compd. Vol. 352 (2003), p.34.

Google Scholar

[17] V. Pop, O. Isnard, I. Chicinaş, J. Alloys Compd. Vol. 361 (2003), p.144.

Google Scholar