Effect of Load Direction on Tensile Yield Properties in Mg-3Al-Zn Alloy

Article Preview

Abstract:

Deformation anisotropy of samples from rolled sheet and extruded rod of AZ31 alloy was investigated in the present work. A strong basal plane texture is detected formed during rolling and extrusion, and both rolled and extruded samples exhibit similar mechanical behavior: tensile yield strength is the highest in the specimens parallel to the longitudinal direction, and decrease continuously as the specimen orientation departs from the longitudinal direction. Using texture analysis and optical microscopy it has been found that, the obvious anisotropy can be explained by texture and orientation factor during tension and compression. Basal slip and twinning are restricted when tensile load is applied in the rolling and extrusion direction, which results in high tensile yield strength along the two directions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-151

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Kaneko, M. Suzuki: Materialia Science Forum Vol. 67 (2003), p.419.

Google Scholar

[2] Beck A: Magnesium und seine Legierungen. Berlim: Springer: (1939).

Google Scholar

[3] M.R. Barnett et al.: Acta Materialia Vol 52 (2004), p.5093.

Google Scholar

[4] S.R. Agnew, M.H. Yoo and C.N. Tome: Acta Materialia Vol. 49 (2001), p.4277.

Google Scholar

[5] S. -B. Yi et al., Acta Materialia Vol. 54 (2006), p, 549.

Google Scholar

[6] R.E. Reed-Hill, W.D. Robertson: Acta Materalia Vol. 5 (1957), p.728.

Google Scholar

[7] H. Yoshiaga, R. Horiuchi: Trans JIM. Vol. 4 (1963), p.134.

Google Scholar

[8] S-E. Hsu et al.: Acta Materialia Vol. 31 (1983), p.763.

Google Scholar

[9] H.J. Forst, M.F. Ashby: Deformation-mechanism maps. Oxford: Pergamon Press, (1982), p.43.

Google Scholar

[10] W. Hiroyuki et al.: Scripta Materialia, Vol. 52 (2005), p.449.

Google Scholar

[11] H. Watanabe, A. Takara and H. Somekawa: Scripta Materialia Vol. 52 (2005). p.449.

Google Scholar

[12] S. Kleiner, P. J. Uggowitze: Mater. Sci. Eng. A Vol. 379(2004), p.258.

Google Scholar

[13] M.R. Barrnett, C.H.J. Davies and X. Ma: Scripta Materialia Vol. 52 (2005), p.627.

Google Scholar

[14] S. -H Choi, E.J. Shin and B.S. Seong: Acta Materialia Vol. 55 (2007), p.4181.

Google Scholar

[15] Myagchilov, P.R. Dawson: Science and Engineering Vol. 7 (1999), p.975.

Google Scholar

[16] S.R. Kalidindi: International Journal of Plasticity Vol. 17 (2001), p.837.

Google Scholar

[17] E.A. Ball, P.B. Prangnell: Scripta MaterialiaVol. 31 (1994), p.111.

Google Scholar

[18] Y.N. Wang, J.C. Huang: Materials Chemistry and Physics Vol. 81 (2003), p.11.

Google Scholar

[19] M.M. Avedesian, H. Baker: ASM Specialty Hand-Book, ASM International, Materials Park (1999), p.258.

Google Scholar

[20] D.L. Yin, J.T. Wang, J.Q. Liu and et al.: Journal of Alloys and Compounds Vol. 478 (2009), p.789.

Google Scholar