Microstructure and Thermo-Physical Properties of TiB2/Si-30Al Composite for Electronic Packaging Applications

Article Preview

Abstract:

2wt.%TiB2/Si-30Al composite was prepared by in-situ reaction and spray forming first and then by hot isostatic pressing (HIP). The microstructure and thermo-physical properties of the composite were investigated by means of scanning electron microscopy, and thermal expansion analyzer respectively. The results show that the microstructure of the TiB2/Si-30Al composite consists of a continuous network of primary Si (~35μm), interpenetrating secondary Al phase, and fine TiB2 particles (1~2μm). The TiB2 particles were uniformly distributed in the Si-30Al alloy matrix. After HIP, the pores in the TiB2/Si-30Al composite were almost eliminated, and the relative density of the composite was up to 98.9%. The 2wt.%TiB2/Si-30Al composite after the HIP exhibits good thermo-physical properties, including lower coefficient of thermal expansion (CTE) (6.6´10-6×K-1) and higher thermal conductivity (84 W×m-1×K-1).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

138-143

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. M. Jacobson: Adv. Mater. & Process Vol. 3 (2000), pp.36-39.

Google Scholar

[2] F. Wang, B. Q. Xiong, Y. A. Zhang, B. H. Zhu, H. W. Liu, Y. G. Wei: Materials Characterization Vol. 59 (2008), pp.1455-1457.

Google Scholar

[3] H. W. Liu, B. H. Zhu, Y. A. Zhang, B. Q. Xiong: Rare Metals Vol. 33 (2009), pp.742-745.

Google Scholar

[4] L. Wang, Y. A. Zhang, H. W. Liu, B. H. Zhu, F. Wang, Y. G. Wei: Rare Metals Vol. 31 (2007), pp.1-4.

Google Scholar

[5] H. W. Liu, Y. A. Zhang, B. H. Zhu, F. Wang, Y. G. Wei, B. Q. Xiong: Rare Metals Vol. 31 (2007), pp.446-450.

Google Scholar

[6] P. S. Grant: Prog. Mater. Sci. Vol. 39 (1995), p.497.

Google Scholar

[7] S.C. Hogg, A. Lambourne, A. Ogilvy and P.S. Grant: Scripta Materialia Vol. 55 (2006), pp.111-114.

DOI: 10.1016/j.scriptamat.2006.02.051

Google Scholar

[8] S.P.S. Sangha: Journal of Engineering Science and Education Vol. 11 (1997), p.195.

Google Scholar

[9] E. D. Manson-Whitton, I. C. Stone, J. R. Jones, P. S. Grant, B. Cantor: Acta Mater. Vol. 50 (2002), pp.2517-2535.

DOI: 10.1016/s1359-6454(02)00080-0

Google Scholar

[10] D. Zhang, B. Yang, J. S. Zhang, Y. A. Zhang, B. Q. Xiong: Transactions of nonferrous metals society of China Vol. 15 (2005), pp.1125-1129.

Google Scholar

[11] P. S. Mohanty, J. E. Gruzleski: Acta Materialia Vol. 44 (1996), pp.3749-3760.

Google Scholar

[12] Paul L. Schaffer, Lars Arnberg b, Arne K. Dahle: Scripta Materialia Vol. 54 (2006), p.677–682.

Google Scholar

[13] G. B. Raju, B. Basu, A. K. Suri: Int. Journal of Refractory Metals & Hard Materials Vol. 28(2010), pp.174-179.

Google Scholar

[14] S.C. Tjong, Z.Y. Ma: Materials Science and Engineering Vol. 29 (2000), pp.49-113.

Google Scholar

[15] L. N. Yu, X. F. Liu, H. M. Ding, X. F. Bian: Journal of Alloys and Compounds Vol. 432 (2007), pp.156-162.

Google Scholar

[16] Shackelford JF, Alexander W. CRC Materials Science and Engineering Handbook, 3rd ed. Boca Raton, FL: CRC Press; (2001).

Google Scholar

[17] K. Chu, C. C. Jia, X. B. Liang, et al: Materials and Design Vol. 30 (2009), pp.3497-3503.

Google Scholar