Performance of Piezoelectrets Made of Non-Porous Polytetrafluoroethylene and Fluoroethylenepropylene Layers

Article Preview

Abstract:

The thermal stability of piezoelectric d33 coefficients and charge dynamics in the piezoelectret films with tailored microstructure, made of non-porous polytetrafluoroethylene (PTFE) and fluoroethylenepropylene (FEP) layers, are investigated by the measurements of the isothermal decay of piezoelectric d33 coefficients at elevated temperatures and the analysis of thermally stimulated discharge (TSD) current spectra in short circuit, respectively. The results show that the quasi-static piezoelectric d33 coefficient up to 300 pC/N is achieved and its Young's modulus is about 0.28 MPa. The d33 values in the present studied films show improved thermal stability compared with the films without regular microstructure. The drift path for the most of detrapped charges in the films is through the solid dielectric layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

343-347

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Bauer-Gogonea and S. Bauer: Handbook of Advanced Electronic and Photonic Materials, Vol. 10 (1992), p.185.

Google Scholar

[2] G.M. Sessler and R. Gerhard-Multhaupt (Eds. ): Electrets (3rd Ed., Laplacian Press, Morgan Hill, CA, 1999).

Google Scholar

[3] M. Lindner, H. Hoislbauer, R. Schwo¨diauer, S. Bauer-gogonea and S. Bauer: IEEE Trans Dielectr. Electr. Insul. Vol. 11 (2004), p.255.

DOI: 10.1109/tdei.2004.1285895

Google Scholar

[4] M. Wegener and S. Bauer: ChemPhysChem Vol. 6 (2005), p.1014.

Google Scholar

[5] X. Zhang, G.M. Sessler and J. Hillenbrand: J Electrostat. Vol. 65 (2007), p.94.

Google Scholar

[6] X. Zhang, J. Hillenbrand and G.M. Sessler: Appl. Phys. Lett. Vol. 85 (2004), p.1226.

Google Scholar

[7] M. Paajanen, M. Wegener, and R. Gerhard-Multhaupt: J. Phys. D: Appl. Phys. Vol. 34 (2001), p.2482.

Google Scholar

[8] X. Zhang, J. Hillenbrand and G.M. Sessler: J. Phys. D: Appl. Phys. Vol. 37 (2004), p.2146.

Google Scholar

[9] J. Hillenbrand, X. Zhang, Y. Zhang and G.M. Sessler: Annual Report on IEEE Conference on Electrical Insulation and Dielectric Phenomena, IEEE, NY (2003), p.40.

DOI: 10.1109/ceidp.2003.1254789

Google Scholar

[10] W. Künstler, Z. Xia, T. Weinhold, A. Pucher and R. Gerhard-Multhaupt: Appl. Phys. A Vol. 70 (2000), p.5.

Google Scholar

[11] G.S. Neugschwandtner, R. Schwödiauer, S. Bauer-Gogonea and S. Bauer: Appl. Phys. A Vol. 70 (2000), p.1.

Google Scholar

[12] R. Schwödiauer, G.S. Neugschwandtner, K. Schrattbauer, M. Lindner, M. Vieyt, S. Bauer-Gogonea and S. Bauer: IEEE Trans. Dielectr. Electric. Insul Vol. 7 (2000), p.578.

DOI: 10.1109/94.868080

Google Scholar

[13] Z.L. Sun, X.Q. Zhang, G.X. Cao, X.W. Wang and Z.F. Xia: Acta Phys. Sin. Vol. 59 (2010), p.5067.

Google Scholar

[14] J. Hillenbrand and G.M. Sessler: IEEE Trans. Dielectr. Electr. Insul. Vol. 11 (2004), p.72.

Google Scholar

[15] J. Hillenbrand and G.M. Sessler: IEEE Trans. Dielectr. Electr. Insul. Vol. 7 (2000), p.537.

Google Scholar

[16] J. Huang, X.Q. Zhang, Z.F. Xia, and X.W. Wang: J. Appl. Phys. Vol. 103 (2008), 084111.

Google Scholar

[17] X.Q. Zhang, J. Hillenbrand and G.M. Sessler: J. Appl. Phys. Vol. 101 (2007), 054114.

Google Scholar