Deformation Behavior of Polycrystalline Fe-Ga-B Alloy at Elevated Temperature

Article Preview

Abstract:

In this work, the hot deformation behavior of Fe83Ga17 alloy with 1.0 at.% B addition was investigated by plane strain compression tests on a Gleeble-1500 hot simulation test machine in the deformation temperature range of 350 to 900 °C. The effects of strain rate range 0.1-10 s-1 on flow stress and microstructure were also studied. It was indicated that as the temperature increases, significant softening of the material occurred, and significant dynamic recovery at low strain rate (0.1 s-1) and recrystallization at high strain rate (10 s-1) occurred during deformation at 900 °C. The results also suggested that deformation mechanism under low temperature (~500°C) was twinning. The hot deformation activation energy (Q) of the Fe83Ga17 with 1.0 at.%B alloy was calculated to be 295.3 kJ/mol.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

467-473

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Guruswamy, N. Srisukhumbowornchai, A.E. Clark, J.B. Restorff, M. Wun-Fogle, Scripta Mater. Vol. 43 (2000), p.239.

DOI: 10.1016/s1359-6462(00)00397-3

Google Scholar

[2] A.E. Clark, J.B. Restorff, M. Wun-Fogle, T.A. Lograsso, D.L. Schlagel, IEEE Trans. Magn. Vol. 36 (2000), p.3238.

DOI: 10.1109/20.908752

Google Scholar

[3] H.Y. Yasuda, M. Aoki, Y. Umakoshi, Acta Mater. Vol. 55 (2007), p.2407.

Google Scholar

[4] A.E. Clark, K.B. Hathaway, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, V.M. Keppens, G. Petculescu, R.A. Taylor, J. Appl. Phys. Vol. 93 (2003), p.8621.

DOI: 10.1063/1.1540130

Google Scholar

[5] R.A. Kellogg, A.M. Russell, T.A. Lograsso, A.B. Flatau, A.E. Clark, M. Wun-Fogle, Acta Mater. Vol. 52 (2004), p.5043.

DOI: 10.1016/j.actamat.2004.07.007

Google Scholar

[6] A.E. Clark, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, J.R. Cullen, IEEE Trans. Magn. Vol. 37 (2001), p.2678.

DOI: 10.1109/20.951272

Google Scholar

[7] A.E. Clark, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, Mater. Trans. Vol. 43 (2002), p.881.

DOI: 10.2320/matertrans.43.881

Google Scholar

[8] J.H. Li, X.X. Gao, T. Xia, L. Cheng, J. Zhu, Scripta Mater. Vol. 63 (2010), p.28.

Google Scholar

[9] J.H. Liu, F. Yi, C.B. Jiang, J. Alloys Compd. Vol. 481 (2009), p.57.

Google Scholar

[10] Javed, T. Szumiata, N.A. Morley, R.J. Gibbs M, Acta Mater. Vol. 58 (2010), p.4003.

Google Scholar

[11] H. Cao, P.M. Gehring, C.P. Devreugd, J.A. Rodriguez-Rivera, J. Li, D. Viehland, Phys. Rev. Lett. Vol. 102 (2009), p.127201.

Google Scholar

[12] S. Pascarelli, M.P. Ruffoni, R. Turtelli Sato, F. Kubel, R. Grössinger, Phys. Rev. B, Vol. 77 (2008), p.184406.

Google Scholar

[13] E. Summers, T.A. Lograsso, J.D. Snodgrass, J. Slaughter, Proc. of SPIE, Vol. 5387 (2004), p.448.

Google Scholar

[14] L.M. Cheng, A.E. Nolting, B. Voyzelle, C. Galvani, Proc. of SPIE, Vol. 6526 (2007), p. 65262N.

Google Scholar

[15] S. Na, A.B. Flatau, J. Appl. Phys. Vol. 103 (2008), p. 07D304.

Google Scholar

[16] J.H. Li, X.X. Gao, J. Zhu, J.C. Jia, M.C. Zhang, Scripta Mater. Vol. 61 (2009), p.557.

Google Scholar

[17] X.X. Gao, J.H. Li, J. Zhu, J. Li, M.C. Zhang, Mater. Trans. Vol. 50 (2009), p. (1959).

Google Scholar

[18] Y.N. Yu. Metallography Principle. Beijing: Metallurgical Industry Press, 2000, p.398.

Google Scholar