Atomic and Electronic Scale Simulation on Low Index Face Growth of Nano CVD Diamond Films

Article Preview

Abstract:

The growth of nano CVD diamond films on low index faces such as (111) face and (100) face under different proposed surface chemical reaction model was simulated by using Kinetic Monte Carlo (KMC) method from atomic scale. The results, for example the influence of deposition time t, substrate temperature Ts, and atomic hydrogen concentration [H] on the film deposition rate, surface roughness, and H embedded in the film under different processing conditions, were systematically analyzed and compared. And the adsorption of various species on {111}-oriented diamond cluster was preliminarily computed from electronic scale by Local Density Approximation (LDA) method to assist understanding the surface adsorption mechanism. It is indicated that the film morphology and quality obtained from atomic scale KMC simulation varies according to the chemical reaction models. And our initial electronic scale computation on {111}-oriented diamond cluster showed that single-carbon species can be adsorbed on the activated site more easily than double-carbon species and the former will result in a more stable state than the latter. In order to reveal the nano CVD diamond film growth mechanism, more work about various species adsorption on many different morphological CVD diamond surfaces is needed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-10

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.A. Yarbrough and R. Messier: Science Vol. 247 (1990), p.688.

Google Scholar

[2] S.T. Lee, Z.D. Lin and X. Jiang: Mater. Sci. Eng. Vol. 25 (1999), p.123.

Google Scholar

[3] A. Gicquel, K. Hassouni, F. Silva and J. Achard: Current Appl. Phys. Vol. 1 (2001), p.479.

Google Scholar

[4] M. Frenklach: J. Appl. Phys. Vol. 65 (1989), p.5142.

Google Scholar

[5] S.J. Harris, A.M. Weiner and T.A. Perry: Appl. Phys. Lett. Vol. 53 (1988), p.1605.

Google Scholar

[6] D.G. Goodwin and G.G. Gavillet: J. Appl. Phys. Vol. 68 (1990), p.6393.

Google Scholar

[7] M. Frenklach and H. Wang: Phys. Rev. B Vol. 43 (1991), p.1520.

Google Scholar

[8] M.E. Coltrin and D.S. Dandy: J. Appl. Phys. Vol. 74 (1993), p.5803.

Google Scholar

[9] Y.A. Mankelevich, A.T. Rakhimov and N.V. Suetin: Diamond and Relat. Mater. Vol. 4 (1995), p.1065.

Google Scholar

[10] I. Schmidt, C. Benndorf and P. Joeris: Diamond and Relat. Mater. Vol. 4 (1995), p.725.

Google Scholar

[11] D.G. Goodwin, N.G. Glumac and H.S. Shin: Proceedings of Twenty-Sixth Symposium (International) on Combustion. Pittsburgh, PA: The Combustion Institute (1996), p.1817.

Google Scholar

[12] D.E. Kassmann and T.A. Badgwell: Diamond and Relat. Mater. Vol. 5 (1996), p.221.

Google Scholar

[13] Y.A. Mankelevich, A.T. Rakhimov and N.V. Suetin: Diamond and Relat. Mater. Vol. 7 (1998), p.1133.

Google Scholar

[14] Y.A. Mankelevich, N.V. Suetin, J.A. Smith and M.N.R. Ashfold: Diamond and Relat. Mater. Vol. 11 (2002), p.567.

Google Scholar

[15] J.M. Larson, M.T. Swihart and S.L. Girshick: Diamond and Relat. Mater. Vol. 8 (1999), p.1863.

Google Scholar

[16] R.S. Tsang, P.W. May and M.N.R. Ashfold: Diamond and Relat. Mater. Vol. 8 (1999), p.242; R.S. Tsang, P.W. May, J. Cole, et al.: Diamond and Relat. Mater. Vol. 8 (1999), p.1388.

DOI: 10.1016/s0925-9635(99)00018-7

Google Scholar

[17] C. Riccardi, R. Barni, E. Sindoni, et al.: Vacuum Vol. 61 (2001), p.211.

Google Scholar

[18] Y.X. Li, D.W. Brenner, X.L. Dong, et al.: Molecular Simulation Vol. 25 (2000), p.41.

Google Scholar

[19] L.F. Dong, J.Y. Chen, X.W. Li, et al.: Thin Solid Films Vol. 390 (2001), p.93.

Google Scholar

[20] T.B. Huang, W.Z. Tang, F.X. Lü, et al.: Thin Solid Films Vol. 429 (2003), p.108.

Google Scholar

[21] G.C. Chen, B. Li, H. Lan, et al.: Diamond and Relat. Mater. Vol. 16 (2007), p.477.

Google Scholar

[22] J.R. Petherbridge, P.W. May, D.E. Shallcross, et al.: Diamond and Relat. Mater. Vol. 12 (2003), p.2178.

Google Scholar

[23] C.J. Rennick, A.G. Smith, J.A. Smith, et al.: Diamond and Relat. Mater. Vol. 13 (2004) 561.

Google Scholar

[24] Y.A. Manklevich, N.V. Suetin, M.N.R. Ashfold, et al.: Diamond and Relat. Mater. Vol. 12 (2003), p.383.

Google Scholar

[25] P.W. May and Y. A. Mankelevich: Mater. Res. Soc. Symp. Proc. Vol. 956 (2007), p.127.

Google Scholar

[26] Y.A. Mankelevich, M.N.R. Ashfold and A.J. Orr-Ewing: J. Appl. Phys. Vol. 102 (2007), pp.063310-1.

Google Scholar

[27] P.W. May and Y.A. Mankelevich: J. Phys. Chem. C Vol. 112 (2008), p.12432.

Google Scholar

[28] X.Z. An, C.X. Li, G.Q. Liu, et al.: J. Central South University (Science and Technology) Vol. 41 (2010), p.896. (In Chinese).

Google Scholar

[29] M. Frenklach and H. Wang: Phys. Rev. B Vol. 43 (1991), p.1520.

Google Scholar

[30] E.J. Dawnkaski, D. Sribastava and B.J. Garrison: J. Chem. Phys. Vol. 102 (1995), p.9401.

Google Scholar

[31] S.J. Harris: Appl. Phys. Lett. Vol. 56 (1990), p.2298.

Google Scholar

[32] S.J. Harris and D.G. Goodwin: J. Phys. Chem. Vol. 97 (1993), p.23.

Google Scholar

[33] A. Netto and M. Frenklach: Diamond and Relat. Mater. Vol. 14 (2005), p.1630.

Google Scholar

[34] E.J. Dawnkaski, D. Srivastava and B.J. Garrison: J. Chem. Phys. Vol. 104 (1996), p.5997.

Google Scholar

[35] C.C. Battaile, D.J. Srolovitz and J.E. Butler: Diamond and Relat. Mater. Vol. 6 (1997), p.1198.

Google Scholar

[36] C.C. Battaile, D.J. Srolovitz and J.E. Butler: J. Crystal Growth Vol. 194 (1998), p.353.

Google Scholar

[37] R. Joe, T.A. Badgwell and R.H. Hauge: Diamond and Relat. Mater. Vol. 7 (1998), p.1364.

Google Scholar

[38] M. Grujicic and S.G. Lai: J. Mat. Sci. Vol. 34 (1999), p.7.

Google Scholar

[39] M. Grujicic and S.G. Lai: J. Mat. Sci. Vol. 35 (2000), p.5359.

Google Scholar

[40] P.W. May, J. N Harvey and J.A. Smith: J. Appl. Phys. Vol. 99 (2006), pp.104907-1.

Google Scholar

[41] P.W. May and Y.A. Mankelevich: J. Appl. Phys. Vol. 100 (2006), pp.024301-1.

Google Scholar

[42] Y.A. Mankelevich and P.W. May: Diamond and Relat. Mater. Vol. 17 (2008), p.1021.

Google Scholar

[43] X.Z. An, C.X. Li, G.Q. Liu, et al.: Sciencepaper Online, http: /www. paper. edu. cn (2009). (In Chinese).

Google Scholar

[44] X.Z. An, Y. Zhang, X.G. Qin, et al.: Chin. Phys. Lett. Vol. 19 (2002), p.1019.

Google Scholar

[45] X.Z. An, Y. Zhang, X.G. Qin, et al.: J. Uni. Sci. Technol. Beijing Vol. 9 (5) (2002), p.367; Vol. 9 (6) (2002), p.453.

Google Scholar

[46] X.Z. An, Y. Zhang, G.Q. Liu, et al.: Rare Metal Mater. & Eng. Vol. 31 (2002), p.349. (In Chinese).

Google Scholar

[47] D. Takeuchi, S. Yamanaka, H. Watanabe, et al.: Diamond and Relat. Mater. Vol. 8 (1999), p.1046.

Google Scholar

[48] X.Z. An, G.Q. Liu, F.Z. Wang and S.X. Liu: Diamond and Relat. Mater. Vol. 12 (2003), p.2169.

Google Scholar

[49] F.G. Celli, P.E. Pehrsson, H.T. Wang and J.E. Butler: Appl. Phys. Lett. Vol. 52 (1988), p. (2043).

Google Scholar

[50] B.W. Yu and S.L. Girshick: J. Appl. Phys. Vol. 75 (1994), p.3914.

Google Scholar

[51] M. Asmann, J. Heberlein and E. Pfender: Diamond and Relat. Mater. Vol. 8 (1999), p.1.

Google Scholar

[52] I. Schmidt and C. Benndorf: Diamond and Relat. Mater. Vol. 8 (1999), p.231.

Google Scholar

[53] C.C. Battaile, D.J. Srolovitz and J.E. Butler: J. Mater. Res. Vol. 14 (1999), p.3439.

Google Scholar

[54] C.C. Battaile, D.J. Srolovitz, I.I. Oleinik, et al.: J. Chem. Phys. Vol. 111 (1999), p.4291.

Google Scholar

[55] D. Takeuchi, S. Yamanaka, H. Watanabe, et al.: Diamond and Relat. Mater. Vol. 8 (1999), p.1046.

Google Scholar

[56] M.P. D'Evelyn, J.D. Graham and L.R. Martin: J. Crys. Growth Vol. 231 (2001), p.506.

Google Scholar

[57] R.C. Brown, C.J. Cramer and J.T. Roberts: Diamond and Relat. Mater. Vol. 10 (2001), p.39.

Google Scholar

[58] M. Frenklach and S. Skokov: J. Phys. Chem. B Vol. 101 (1997) 3025.

Google Scholar

[59] J.S. Foord, K.P. Loh and R.B. Jackman: Surf. Sci. Vol. 399 (1998), p.1.

Google Scholar