[1]
A. Ball, Y. Chauhan, G. B. Schaffer. Microstructure, phase equilibria, and transformations in corrosion resistant dual phase steel designated 3CR12. Mater. Sci. Tech. 3 (1987), pp.189-196.
DOI: 10.1179/mst.1987.3.3.189
Google Scholar
[2]
M. Topic, C. Allen, R. Tait. The effect of cold work and heat treatment on the fatigue behaviour of 3CR12 corrosion resistant steel wire. Int. J. Fatigue 29 (2007), pp.49-56.
DOI: 10.1016/j.ijfatigue.2006.02.050
Google Scholar
[3]
Columbus Stainless. 3CR12 Technical data, South Africa: Columbus Stainless (Pty) Ltd; June (2007).
Google Scholar
[4]
P.H. Chong, Z. Liu, P. Skeldon et al. Characterisation and corriosn performance of laser-melted 3CR12 steel. Appl. Surf Sci. 247 (2005), pp.362-268.
DOI: 10.1016/j.apsusc.2005.01.136
Google Scholar
[5]
Emel Taban, Eddy Deleu, Alfred Dhooge, Erdinc Kaluc. Laser welding of modified 12%Cr stainless steel: strength, fatigue, toughness, microstructure, and corrosion properties. Mater. Design 30(4) (2009), pp.1193-200.
DOI: 10.1016/j.matdes.2008.06.030
Google Scholar
[6]
Emel Taban, Erdinc Kaluc, Alfred Dhooge. Hybrid (plasma+gas tungsten arc) weldability of modified 12%Cr ferritic stainless steel. Mater. Design 30 (2009), pp.4236-42.
DOI: 10.1016/j.matdes.2009.04.031
Google Scholar
[7]
Emel Taban, Alfred Dhooge, Erdinc Kaluc. Plasma arc welding of modified 12% Cr stainless steel [J]. Mater. Manuf. Process 24(6) (2009), pp.649-59.
DOI: 10.1080/10426910902769152
Google Scholar
[8]
ThyssenKrupp Nirosta. NIROSTA 4003-The winning formula for modern steel application. Product catalogue. Germany: ThyssenKrupp Nirosta; October (2004).
DOI: 10.1007/978-3-8349-8910-9_9
Google Scholar
[9]
AK Steel. Product data sheet-41003 stainless steel data. Product catalogue. America: AK Steel Corporation; (2007).
Google Scholar
[10]
AK Steel. Product data bulletin-409Ni stainless steel data. Product catalogue. America: AK Steel Corporation; (2007).
Google Scholar
[11]
Sandvik. Plate sheet and coil: Sandvik 5CR12Ti. Product catalogue. Sweden: Sandvik; November (2004).
Google Scholar
[12]
Li-xin Wang, Chang-jiang Song, Feng-mei Sun, Li-juan Li, Qi-jie Zhai. Microstructure and mechanical properties of 12 wt% ferritic stainless steel with Ti and Nb dual stabilization. Mater. Design 30 (2009), pp.49-56.
DOI: 10.1016/j.matdes.2008.04.040
Google Scholar
[13]
Fujita Kenichi, Yaginuma Hiroshi, Kakihara Setsuo. A structural stainless steel with excellent corrosion resistance in welding: JFE410RW. JFE Technical Report 12 (2008), pp.65-70.
Google Scholar
[14]
A M Meyer, M du TOIT. Interstitial diffusion of carbon and nitrogen into heat-affected zones of 11-12% Chromium steel welds [J]. Weld. J. 80(12) (2001), pp.275-80.
Google Scholar
[15]
L.M. Matthews, B. Griesel, P.T. Longman, G.T. van Rooyen, J.M. Prozzi. Sensitization in low carbon 12% Chromium-containing stainless steel. Proceedings of the 14th International Corrosion Congress. South Africa (1999), p.332.
Google Scholar
[16]
A Tuling. EELS study of sensitization in 12% chromium steel. Proceedings of the microscopy society of Southern Africa 31 (2001), p.26.
Google Scholar
[17]
H. Tomari, K. Fujiwara, K. Shimogori, T. Fukuzuka, and M. Kanda. Intergranular stress corrosion cracking of 13%Cr and 18%Cr ferritc steels in high temperature high purity water. Corrosion 38(5) (1982), pp.283-294.
DOI: 10.5006/1.3577351
Google Scholar
[18]
P.C. Pistorius and A. Mignone. Modified electrochemical potentiokinetic reactivation method for detecting sensitization in 12wt-% chromium ferritic stainless steels. Corrosion 48(9) (1992), pp.715-726.
DOI: 10.5006/1.3315992
Google Scholar
[19]
M. D. Roit, G. T. Van Rooyen, D. Smith. Heat-affected zone sensitization and stress corrosion cracking in 12% Chromium Type 1. 4003 ferritic stainless steel. Corrosion 63(5) (2007), pp.395-404.
DOI: 10.5006/1.3278392
Google Scholar
[20]
Martin van Warmelo, David Nolan, John Norrish. Mitigation of sensitation effects in unstabilised 12%Cr ferritic stainless steel welds. Mater. Sci. Eng. A 464 (2007), pp.157-169.
DOI: 10.1016/j.msea.2007.02.113
Google Scholar
[21]
M. L. Greeff, M. du Toit. Looking at the sensitization of 11-12%Chromium EN 1. 4003 stainless steels during welding. Weld. J. 85(11) (2006), pp.243-251.
Google Scholar
[22]
Huaibei Zheng, Xiaoning Ye, Laizhu Jiang et al. Study on microstructure of low carbon 12% chromium stainless steel in high temperature heat-affected zone. Mater. design 31 (2010), pp.4836-4841.
DOI: 10.1016/j.matdes.2010.05.054
Google Scholar
[23]
ASTM A763-93. Standard practices for detecting susceptibility to intergranular attack in ferritic stainless steels. ASTM International (2004).
DOI: 10.1520/a0763
Google Scholar
[24]
Xiaodong Liu, G.S. Frankel, B. Zoofan, S.I. Rokhlin. Effect of applied tensile stress on intergranular corrosion of AA2024-T3. Corrosion Sci. 46 (2006), pp.405-425.
DOI: 10.1016/s0010-938x(03)00149-5
Google Scholar