Atomic Simulation for Lattice Structure of La/SrMnO3 Superlattice

Article Preview

Abstract:

We studied in detail the lattice transition and local lattice structure (including Jahn-Teller distortion) in LaMnO3/SrMnO3 surperlattices by classical atomistic simulation. For a certain doping density, it is found that the superlattices with short modulation period have small lattice energies and larger differences among lattice parameters a, b/√2 and c. The average La-Mn (Mn3+-O) distance is larger than the average Sr-Mn (Mn4+-O) distance for all doping densities and superlattice configurations at certain doping density. The standard deviation of Mn-O bond lengths and Jahn-Teller distortion of MnO6 octahedra have been calculated. Both the standard deviation and Jahn-Teller distortion of Mn3+O6 octahedra in the superlattices are much smaller than those of Mn3+O6 octahedra in LaMnO3, while Mn4+O6 octahedra in the superlattices have the smallest lattice distortion, but larger than those in SrMnO3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-57

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

Ā© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Dagotto, T. Hotta and A. Moreo: Phys. Rep. Vol. 344 (2001), p.1.

Google Scholar

[2] M.B. Salamon and M. Jaime: Rev. Mod. Phys. Vol. 73 (2001), p.583.

Google Scholar

[3] A-M. Haghiri-Gosnet and J. -P. Renard: J. Phys. D Vol. 36 (2003), p.127.

Google Scholar

[4] A.J. Millis, P.B. Littlewood and B.I. Shraiman: Phys. Rev. Lett. Vol. 74 (1995), p.5144.

Google Scholar

[5] S. Dong, H. Yu, K.F. Wang, X.Y. Yao and J.M. Liu: Comput. Mater. Sci. Vol. 33 (2005), p.168.

Google Scholar

[6] S. Piskunov, E. Spohr, T. Jacob, E.A. Kotomin and D.E. Ellis: Phys. Rev. B Vol. 76 (2007), p.012410.

Google Scholar

[7] A.J. Millis, T. Darling and A. Migliori: J. Appl. Phys. Vol. 83 (1998), p.1588.

Google Scholar

[8] F. Tsui, M.C. Smoak, T.K. Nath and C.B. Eom: Appl. Phys. Lett. Vol. 76 (2000), p.2421.

Google Scholar

[9] Y. Lu, J. Klein, F. Herbstritt, J.B. Philipp, A. Marx and R. Gross: Phys. Rev. B Vol. 73 (2006), p.184406.

Google Scholar

[10] G.M. Zhao, K. Conder, H. Keller and K.A. Müller: Nature (London) Vol. 381 (1996), p.676.

Google Scholar

[11] P.G. Radaelli, G. Iannone, M. Marezio, H.Y. Hwang, S.W. Cheong, J.D. Jorgensen and D.N. Argyriou: Phys. Rev. B Vol. 56 (1997), p.8265.

Google Scholar

[12] A. Bhattacharya, X. Zhai, M. Warusawithana, J.N. Eckstein and S.D. Bader: Appl. Phys. Lett. Vol. 90 (2007), p.222503.

Google Scholar

[13] A. Bhattacharya, S.J. May, S.G.E. Te Velthuis, M. Warusawithana, X. Zhai, B. Jiang, J.M. Zuo, M.R. Fitzsimmons, S.D. Bader and J.N. Eckstein: Phys. Rev. Lett. Vol. 100 (2008), p.257203.

Google Scholar

[14] C. Adamo, X. Ke, P. Schiffer, A. Soukiassian, L. Maritato and D.G. Schlom: Appl. Phys. Lett. Vol. 92 (2008), p.112508.

DOI: 10.1063/1.2842421

Google Scholar

[15] H. Yamada, M. Kawasaki, T. Lottermoser, T. Arima and Y. Tokura: Appl. Phys. Lett. Vol. 89 (2006), p.052606.

Google Scholar

[16] C. Lin and A.J. Millis: Phys. Rev. B Vol. 78 (2008), p.184405.

Google Scholar

[17] B.R. K Nanda and S. Satpathy: Phys. Rev. Lett. Vol. 101 (2008), p.127201.

Google Scholar

[18] B.R. K Nanda and S. Satpathy: Phys. Rev. B Vol. 78 (2008), p.054427.

Google Scholar

[19] F.L. Tang and X. Zhang: Phys. Rev. B Vol. 73 (2006), p.144401.

Google Scholar

[20] F.L. Tang, X.G. Chen, W.J. Lu and W. Y. Yu: Physica B Vol. 405 (2010), p.1248.

Google Scholar

[21] F.L. Tang, M. Huang, W.J. Lu and W.Y. Yu: Surf. Sci. Vol. 603 (2009), p.948.

Google Scholar

[22] F.L. Tang and X. Zhang: Appl. Phys. Lett. Vol. 90 (2007), p.142501.

Google Scholar

[23] F.L. Tang and X. Zhang: J. Phys. Condens. Matter Vol. 19 (2007), p.106216.

Google Scholar

[24] F.L. Tang and X. Zhang: J. Phys. Condens. Matter Vol. 18 (2006), p.7851.

Google Scholar

[25] J. Gale and A.L. Rohl: Mol. Simula. Vol. 29 (2003), p.291.

Google Scholar

[26] B.G. Dick and A.W. Overhauser: Phys. Rev. Vol. 112 (1958), p.90.

Google Scholar

[27] X. Zhang and L. Wang: J. Phys. Chem. Solids Vol. 64 (2003), p.1207.

Google Scholar

[28] C.H. Chen, S. -W. Cheong and H.Y. Hwang: J. Appl. Phys. Vol. 81 (1997), p.4326.

Google Scholar

[29] S. Mori, C.H. Chen and S. -W. Cheong: Nature (London) Vol. 392 (1998), p.473.

Google Scholar

[30] M.T. Fernández-Díaz, J.L. Martínez, J.M. Alonso and E. Herrero: Phys. Rev. B Vol. 59 (1999), p.1277.

Google Scholar

[31] R. Wang, J. Gui, Y. Zhu and A.R. Moodenbaugh: Phys. Rev. B Vol. 61 (2000), p.11946.

Google Scholar

[32] P.G. Radaelli, D.E. Cox, L. Capogna, S. -W. Cheong and M. Marezio: Phys. Rev. B Vol. 59 (1999), p.14440.

Google Scholar

[33] A.N. Ulyanov and S. -C. Yu: J. Appl. Phys Vol. 97 (2005), p. 10H702.

Google Scholar

[34] T.A. Tyson, M. Deleon, M. Croft, V.G. Harris, C. -C. Kao, J. Kirkland and S. -W. Cheong: Phys. Rev. B Vol. 70 (2004), p.24410.

Google Scholar

[35] T. Shibata, B. Bunker, J.F. Mitchell and P. Schiffer: Phys. Rev. Lett. Vol. 88 (2002), p.207205.

Google Scholar

[36] A. Palanisami, M. Warusawithana, J.N. Eckstein, M.B. Weissman and N. D. Mathur: Phys. Rev. B Vol. 72 (2005), p.24454.

Google Scholar

[37] R.H. Heffner, J.E. Sonier, D.E. MacLaughlin, G.J. Nieuwenhuys, G. Ehlers, F. Mezei, S. -W. Cheong, J.S. Gardner and H. Röder: Phys. Rev. Lett. Vol. 85 (2000), p.3285.

Google Scholar

[38] C.H. Chen and S. -W. Cheong: Phys. Rev. Lett. Vol. 76 (1996), p. 4042Fig. 1 The evolution of atomic occupation profiles at 873K(a), (b); 1253K(c), (d) for Ni75Al15Fe10 alloy. (a), (c) t=6000; (b), (d) t=50000.

Google Scholar