Investigation of the Fatigue Behavior of AlMg4.5Mn (EN AW-5083) in the Temperature Range -60 °C < T < 20 °C

Article Preview

Abstract:

Stress-controlled load increase and constant amplitude tests have been carried out in a temperature range of -60°C < T < 20°C at the aluminium alloy AlMg4.5Mn (EN AW-5083). Therefore a recently developed climate chamber which operates with liquid nitrogen was mounted on a servo-hydraulic fatigue testing machine to realize the required low temperatures. Beside conventional mechanical hysteresis measurements, electrical resistance and temperature measurements are used to characterize the fatigue behavior. Furthermore, with these methods, the endurance limit was successfully estimated in a load increase test. Woehler curves were determined with constant amplitude tests at different temperatures. The conventionally determined endurance limit corresponds with the value from the load increase test.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

290-293

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Ostermann: Anwendungstechnologie Aluminium, Springer Verlag (2007).

Google Scholar

[2] I. J. Polmear: Light Alloys, Arnold (1995).

Google Scholar

[3] J. Kaufman: Introduction to Aluminum Alloys and Tempers, ASM International (2000).

Google Scholar

[4] D. Heinz, B. Richter, S. Weber: Application of advanced materials for ship construction – Experiences and problems, Materials and Corrosion Volume 51, 6 (2000) pp.407-412.

DOI: 10.1002/1521-4176(200006)51:6<407::aid-maco407>3.0.co;2-s

Google Scholar

[5] M. Skillingberg: Aluminium At Sea, Speed, endurance and affordability, Marine Log (2007).

Google Scholar

[6] M. Schrödel: Bruchmechanische Untersuchungen der Rissöffnung bei stabilem Risswachstum in dünnen Blechen aus Al 5083 (2006).

Google Scholar

[7] C. Morgenstern: Kerbgrundkonzepte für die schwingfeste Auslegung von Aluminiumschweiß-verbindungen am Beispiel der naturharten Legierung AlMg4, 5Mn (AW-5083) und der warmausgehärteten Legierung AlMgSi1 T6 (AW-6082 T6) (2006).

DOI: 10.1002/mawe.200600089

Google Scholar

[8] J. Heerens, M. Schrödel: Characterization of stable crack extension in aluminium sheet material using the crack tip opening angle determined optically and by the d5 clip gauge technique, Engineering Fracture Mechanics Volume 76, 1 (2009).

DOI: 10.1016/j.engfracmech.2008.04.009

Google Scholar

[9] H. Sheikh: Investigation into Characteristics of Portevin-Le Chatelier Effect of an Al-Mg Alloy, Journal of Materials Engineering and Performance Volume 19, 9 (2010) pp.1264-1267.

DOI: 10.1007/s11665-010-9634-0

Google Scholar

[10] P. Starke, D. Eifler: Fatigue assessment and fatigue life calculation of metals on the basis of mechanical hysteresis, temperature and resistance data, MP-Material Testing 51, 5 (2009) pp.261-268.

DOI: 10.3139/120.110034

Google Scholar

[11] D. Dengel, H. Harig: Estimation of the fatigue limit by progressively increasing load tests, Fatigue & Fracture of Engineering Materials & Structures Vol. 3 (1980) pp.113-128.

DOI: 10.1111/j.1460-2695.1980.tb01108.x

Google Scholar

[12] Y. Bréchet, Y. Estrin: On the relations between Portevin le Chatelier Plastic instabilities and precipitation, Key Engineering Materials Volumes 97-98 (1994) pp.235-250.

DOI: 10.4028/www.scientific.net/kem.97-98.235

Google Scholar