High Temperature Deformation Behavior and Microstructure Preparation of Cu-Ni-Si-P Alloy

Article Preview

Abstract:

The hot deformation behavior of Cu-Ni-Si-P alloy have been investigated by means of isothermal compression tests on a Gleeble-1500D thermal mechanical simulator in the temperature ranges of 873-1073 K and strain rate ranges of 0.01-5s-1. The results show that the dynamic recryatallization occurs in Cu-Ni-Si-P alloy during hot deformation. The peak stress during hot deformation can be described by the hyperbolic sine function. The influence of deformation temperature and strain rate on the peak stress can be represented using the Zener-Hollomon parameter. Moreover, the activation energy for hot deformation of Cu-Ni-Si-P alloy is determined to be 485.6 kJ / mol within the investigated ranges of deformation temperature and strain rate. The constitutive equation of the Cu-Ni-Si-P alloy is also established. Keywords: Cu-Ni-Si-P alloy; Hot deformation; Dynamic recrystallization; Zener-Hollomon parameter.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 704-705)

Pages:

135-140

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Liu P, Kang BX, Cao XG, Huang JL, Yen B, Gu HC. Mater. Sci. Eng. A 1999; 265: 262-267.

Google Scholar

[2] Zhao DM, Dong QM, Liu P, Kang BX, Huang JL, Jin ZH. Mater. Chemis. And Phys 2003; 79: 81-86.

Google Scholar

[3] Zhao DM, Dong QM, Liu P, Kang BX, Huang JL, Jin ZH. Mater. Sci. Eng. A 2003; 361: 93-99.

Google Scholar

[4] Jia SG, Liu P, Ren FZ, Zheng MS. Mater. Sci. Eng. A 2005; 398; 166-262.

Google Scholar

[5] Huang FX, Ma JS, Ning HL, Cao YW, Geng ZT. Mater. Lett 2003; 57: 2135-2139.

Google Scholar

[6] Witusiewicz VT, Arpshofen I, Seifert HJ, Sommer F, Aldinger F.J. Alloys Compd 2002; 337: 155-167.

DOI: 10.1016/s0925-8388(01)01942-9

Google Scholar

[7] Pfaendtner JA, McMahon CJ. Acta Mater 2000; 149: 3369-3377.

Google Scholar

[8] Kokorin VV, Kozlova LE, Titenko AN. Scripta Mater 2002; 47: 499-502.

Google Scholar

[9] Jia SG, Zheng MS, Liu P, Ren FZ, Tian BH, Zhou GS, Lou HF. Mater. Sci. Eng. A 2006; 419; 8-11.

Google Scholar

[10] Suzuki S, Shibutani N, Mimura K, Isshiki M, Waseda Y. J. Alloys Compd 2006; 417: 116-120.

Google Scholar

[11] Zener C, Hollomon J H. J Appl Phys 1946; 17: 69-82.

Google Scholar

[12] Zener C, Hollomon J H. J Appl Phys 1944; 15: 22-32.

Google Scholar

[13] Takuda H, Fujimoto H, Hatta N. J. Mater. Process. Technol 1998; 8: 513-516.

Google Scholar

[14] Medina SF, Hernandez CA. Acta. Mater 1996; 44: 137-148.

Google Scholar

[15] Imbert C, Ryan ND, McQueen HJ. Metal Trans A 1984; 15: 1855-1864.

Google Scholar