Effect of αk on Aluminium Trihydroxide Crystallization from Sodium Aluminate Soluntion under Ultrasound

Article Preview

Abstract:

The ultrasound intensification crystallization process of aluminium trihydroxide from seeded sodium aluminate solution is investigated with various αk (the molecule ratio of Na2O/Al2O3). The experiment results indicate that ultrasound intensification can enhance precipitation ratio of seeded sodium aluminate solution, while large αk does not good to improvement of the precipitation under ultrasound. When αk is 1.45, 2.0 and 2.5, the precipitation ratio increase 2.5%, 2.0% and 0.9%, respectively under ultrasound intensification. The mechanism of enhancement on precipitation of alumina hydrate is acoustic cavitations that enhance or alter reactions process of aluminate ions, Al (OH)-4. The mass percentage of precipitation production grain size <45μm is increased by 4.3 % under ultrasound intensification with initial αk at 2.0, which is the biggest. Key words: ultrasound; sodium aluminate solution; precipitation; aluminium trihydroxide

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 704-705)

Pages:

364-369

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Chester, F. Jones, M. Loan, A. Oliveira and W. R. Richmond: Hydrometallurgy Vol. 96 (2009), p.215.

Google Scholar

[2] H. Watling, J. Loh and H. Gatter: Hydrometallurgy Vol. 55 (2000), p.275.

Google Scholar

[3] F. Farhadi and M. B. Babaheidary: J. Crystal Growth Vol. 234 (2002), p.721.

Google Scholar

[4] B. DASH, C. B. Tripathy, I. N. Bhattacharya, S. C. Das, C. R. Mishra and B S Pani: Hydrometallurgy Vol. 88 (2007), p.121.

Google Scholar

[5] N. Brown: J. Crystal Growth Vol. 29 (1975), p.309.

Google Scholar

[6] Z. Wang, S. W. Bi, Y. H. Yang and Z F Yuang: J. Crystal Growth Vol. 274 (2005), p.218.

Google Scholar

[7] A. M. Paulaime, I. Seyssiecq and S. Veesler: Powder Technolo. Vol. 130 (2003), p.345.

Google Scholar

[8] H. X. Li, J. Addai-Mensah, J. C. Thomas and A R Gerson:. J. Crystal Growth Vol. 279 (2005), p.508.

Google Scholar

[9] I. Seyssiecq, S. Veesler, D. Mangin, J. P. Klein and R Boistelle: Chem. Eng. Sci. Vol. 55 (2000), p.5565.

Google Scholar

[10] F. Chen, B. Y. Zhang, S. W. Bi, Y. H. Yang. and Y. G. Chen: Chin. J. Nonfe. Met. Vol. 96 (2009), p.2054 (in Chinese).

Google Scholar

[11] Y. S. Wu, D. Zhang and M C Li: Trans. Nonferrous Met. Soc. China Vol. 20 (2010), p.528.

Google Scholar

[12] J. B. Liu, J. Q. Chen, Z. L. Yin, P. M. Zhang and Q. Y. Chen: Chin. J. Process Eng. Vol. 4 (2004), p.130.

Google Scholar

[13] B. Zhang, J. Li, Q. Y. Chen and G. H. Chen: Miner. Eng. Vol. 22 (2004), p.853.

Google Scholar

[14] J. H. Park, S. W. Kim, S. H. Lee, H. S. Kim, S. S. Park, and H. C. Park: J. Mater. Synth. Process. Vol. 10 (2002), p.289.

Google Scholar

[15] M. A. Margulis: Ultrasonics, Vol. 7 (1985), p.157.

Google Scholar

[16] T. Imamura: Ultrasonics, Vol. 37 (1999), p.71.

Google Scholar