Molecular-Dynamics Studies of the Diffusion of H2 in All-Silica ZSM-5

Article Preview

Abstract:

Molecular dynamics (MD) techniques were employed to simulate the diffusion properties of molecular hydrogen on all-silica ZSM-5 zeolite. The results indicated that in the temperature range of 77-293K and the pressure range of 14-3360 kPa, the diffusion coefficients are found to range from 1.2×10-9 m2/s to 3.8×10-7 m2/s, and increase with increasing temperature, and decrease with increasing pressure. The activated energy for hydrogen diffusion determined from the simulation is pressure-dependent. The diffusion of the molecular hydrogen in all-silica ZSM-5 zeolite channels is anisotropic duo to the increase of the temperature. The diffusion coefficients in straight channels are higher than that in zigzag channels. The difference results from the structural difference of the two channels and the different loadings of hydrogen. Keywords: Hydrogen; Zeolite; Diffusion; Molecular-dynamics simulation

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 704-705)

Pages:

401-406

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Szczygiel, B. Szyja: Mircopor. Macropor. Mater. Vol. 83 (2005), p.85.

Google Scholar

[2] I. Hussain, J. O. Titiloye: Mircopor. Macropor. Mater. Vol. 85 (2005), p.143.

Google Scholar

[3] D. Schuring, A. O. Koriabkina, A. M. de Jong, B. Smit, R. A. van Santen: J. Phys. Chem. B Vol. 105 (2001), p.7690.

Google Scholar

[4] D. W. Shin, S. H. Hyun, C. H. Cho, M. H. Han: Mircopor. Macropor. Mater. Vol. 85 (2005), p.313.

Google Scholar

[5] L. T. Y. Au, K. L. Yeung: J. Membr. Sci. Vol. 194 (2001), p.33.

Google Scholar

[6] X. M. Du, E. D. Wu: Chin. J. Mater. Res. Vol. 20 (2006), p.591.

Google Scholar

[7] X. M. Du, E. D. Wu: Acta Phys. Chim. Sin. Vol. 23 (2007), p.813.

Google Scholar

[8] X. M. Du, E. D. Wu: Acta Phys. Chim. Sin. Vol. 25 (2009), p.549.

Google Scholar

[9] X. M. Du, E. D. Wu: Mater. Sci. Forum Vol. 663-665 (2011), p.934.

Google Scholar

[10] P. Demontis, G. B. Suffritti, S. Fois, S. Quartieri: J. Phys. Chem. Vol. 96 (1992), p.1482.

Google Scholar

[11] Information on http: / www. topaz. ethz. ch.

Google Scholar

[12] Z. Lai, M. Tsapatsis, J. P. Nicolich: Adv. Funct. Mater. Vol. 14 (2004), p.716.

Google Scholar

[13] Information on http: /www. cse. scitech. ac. uk.

Google Scholar

[14] J. G. Vitillo, G. Ricchiardi, G. Spoto, A. Zecchina: Phys. Chem. Chem. Phys. Vol. 7 (2005), p.3948.

DOI: 10.1039/b510989b

Google Scholar

[15] L. Verlet: Phys. Rev. Vol. 159 (1967), p.98.

Google Scholar

[16] S. Nose: Mol. Phys. Vol. 100 (2002), p.191.

Google Scholar

[17] D. Hofmann, L. Fritz, C. Schepers, M. Bohning: Macromol. Theory Simul. Vol. 9 (2000), p.293.

Google Scholar

[18] D. Schuring, A. P. J. Jansen, R. A. van Santen: J. Phys. Chem. B Vol. 104 (2000), p.941.

Google Scholar

[19] N. K. Bar, H. Ernst, H. Jobic, J. Karger: Magn. Reson. Chem. Vol. 37 (1999), p.79.

Google Scholar

[20] J. Fredrik, H. Jonas, C. Derek, S. Johan: J. Membr. Sci. Vol. 236 (2004), p.81.

Google Scholar

[21] J. Fredrik, H. Jonas: Mircopor. Macropor. Mater. Vol. 83 (2005), p.326.

Google Scholar

[22] T.C. Golden, S. Sircar: J. Colloid Interface Sci. Vol. 162 (1994), p.182.

Google Scholar

[23] D. Do: Adsorption analysis: equilibrium and kinetics (Imperial College Press, London 1998).

Google Scholar

[24] Q. Y. Yang, C. L. Zhong: J. Phys. Chem. B Vol. 109 (2005), p.11862.

Google Scholar

[25] L.V.C. Rees, D. Shen: Stud. Surf. Sci. Vol. 87 (1994), p.563.

Google Scholar

[26] E. Hernandez, C.R.A. Catlow, in: Access in Nanoporous Materials, edited by T. J. Pinnavaia, M. F. Thorpe, chart 4, pp.143-160, Plenum Press, New York (1995).

Google Scholar