The Effect of Y on Aging Response and Mechanical Properties of Mg-Ho-Zr Alloys

Article Preview

Abstract:

Mg-10Ho-0.6Zr alloys with different amount of Y additions are prepared by metal mould casting method. The effects of Y content on microstructure, age hardening behavior and mechanical properties are investigated. Results show that all the as-cast Mg-10Ho-xY-0.6Zr alloys are mainly comprised of α-Mg matrix and Mg24(Ho,Y)5 phase. With increasing Y content, grain size of the as-cast alloys is reduced. Age hardening response, Vickers hardness and mechanical properties are improved with the addition of Y. The maximum ultimate tensile strength (UTS) and yield strength (YS) are obtained in Mg-10Ho-3Y-0.6Zr alloy at peak-aged state, and the values are 215 MPa, 158 MPa at room temperature, and 144 MPa, 126 MPa at 250 °C, respectively. The improvement of the UTS is mainly attributed to the fine distributed quadrate-like β stable phase. Key words: Mg-Ho-Y-Zr alloy; Microstructure; Age hardening behavior; Mechanical properties

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 704-705)

Pages:

546-551

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.J. Apps, H. Karimzadeh, J.F. King: Scripta Mater. Vol. 48 (2003), p.475.

Google Scholar

[2] K. Zheng, J. Dong, X. Zeng, W. Ding: Mater. Sci. and Eng. A, Vol. 489 (2008), p.44.

Google Scholar

[3] D. LI, J. Dong, X. Zeng, C. Lu, W. Ding: J. Alloys and Compd., Vol. 439 (2007), p.254.

Google Scholar

[4] Q. Peng, Y. Wu, D. Fang, J. Meng, L. Wang: J. Mater. Sci., Vol. 42 (2007), p.3908.

Google Scholar

[5] I.A. Anyanwu, S. Kamado, Y. Kojima: Mater. Trans., Vol. 42 (2001), p.1206.

Google Scholar

[6] D. Li, Q. Wang, Ding Wen-jiang: Mater. Sci. and Eng. A, Vol. 448 (2007), p.165.

Google Scholar

[7] B. Liu, J. Liu, X. Hou, L. Wang, Trans. Nonferrous Met. Soc. China, Vol. 20 (2010), p.267.

Google Scholar

[8] M.X. Zhang, P.M. Keely: Scripta Materialia, Vol. 48 (2003), p.379.

Google Scholar

[9] Z. Li, H. Zhang, L. Liu: Materials letters, Vol. 58 (2004), p.3021.

Google Scholar

[10] M. Socjusz-podosek, L. Litynaka: Mater. Chem. and Phys., Vol. 80 (2003), p.472.

Google Scholar

[11] J.F. Nie, B.C. Muddle: Acta Materialia, Vol. 48 (2000), p.1691.

Google Scholar

[12] C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, A. Pisch: Acta Materialia, Vol. 51 (2003), p.5335.

DOI: 10.1016/s1359-6454(03)00391-4

Google Scholar

[13] J. Wang, D. Zhang, J. Meng: J. Alloys and Compd., Vol. 454 (2008), p.194.

Google Scholar

[14] Q. Peng, Y. Wu, D. Fang, L. Wang: J. Alloys and Compounds, Vol. 430 (2007), p.252.

Google Scholar

[15] F. Wang Y. Wang, P. Mao, B. Yu, Q. Guo: Trans. Nonferrous Met. Soc., Vol. 20 (2010), p.311.

Google Scholar