Numerical Simulation of Fracture Saturation in Multilayer Materials in Symmetric Case

Article Preview

Abstract:

Using Realistic Failure Process Analysis Code RFPA2D, a three layer materials model with a central layer and with the same thickness top and bottom layer, progressive formation of fracture saturation in multilayer materials is simulated in all case by numerical simulation. Our numerical simulation recurrence the phenomenon of fracture saturation in multilayer materials. numerical simulation shown that for the symmetric case the spacing of these fractures at fracture saturation are approximately the same and lineally related to thickness of the fractured layer. We investigate that the critical fracture spacing to layer thickness ratio is function of the thickness ratio of the top and bottom layers to central layer at fracture saturation. numerical simulation shown that for the symmetric case the critical spacing of fractures to layer thickness ratio decreases rapidly and tends to a constant value.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 704-705)

Pages:

641-644

Citation:

Online since:

December 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Bai Taixu, Pollard. D. D,. Spacing of Fractures in a multilayer at Fracture saturation. International Journal of Fracture, 100(1999): L23-L28.

Google Scholar

[2] Bai T., Pollard. D. D, Fracture spacing in layered rock: a new explanation based on the stress transition. Journal of structural geology, 22(2000a): 43-57.

DOI: 10.1016/s0191-8141(99)00137-6

Google Scholar

[3] Bai T., Pollard. D. D, Gao H., closely spaced Fractures in layered rock: initiation mechanism and propagation kinematics. Journal of structural geology, 22(2000b) : 1409-1425.

DOI: 10.1016/s0191-8141(00)00062-6

Google Scholar

[4] Bai T., Pollard. D. D, Gao H., Explanation for fracture spacing in layered materials, Nature, 403(2000): 753-756.

DOI: 10.1038/35001550

Google Scholar

[5] Bai T., Maerten, L., Gross, M.R., Aydin, A., Orthogonal cross joints: Do they imply a regional stress rotation, Journal of structural geology, 24(2002): 77-88.

DOI: 10.1016/s0191-8141(01)00050-5

Google Scholar

[6] C.A. Tang, Z.Z. Liang, Y.B. Zhang,X. Chang, X. Tao, D.G. Wang, J.X. Zhang, J. S. Liu, W.C. Zhu, and D. Elsworth, Fracture spacing in layered materials: a new explanation based on two –dimensional failure process modeling. American Journal of Science, 308(2008: )49-72.

DOI: 10.2475/01.2008.02

Google Scholar

[7] Garrett K. W., Bailey J.E., multiple transverse fractures in 900 cross-ply laminates of glass fiber-reinforced polyester. Journal of Material Science, 12(1977): 157-168.

DOI: 10.1007/bf00738481

Google Scholar

[8] Hong A. P., Li Y. N., Bazant P., Theory of crack spacing in concrete pavement. Journal of Engineering Mechanics, 123(1997): 267-275.

Google Scholar

[9] Narr N., Suppe J. 1991, Joint spacing in sedimentary rock, Journal of Structural Geology, 13(1991): 1037-1048.

DOI: 10.1016/0191-8141(91)90055-n

Google Scholar

[10] Parvizi A, Bailey J.E., On multiple transverse cracking in glass fiber epoxy cross-play laminate. Journal of Material Science, 1978, 13(1978): 2131-2136.

DOI: 10.1007/bf00541666

Google Scholar

[11] Pollard D. D., Aydin. A., Progress in understanding jointing over the past century. Geological Society of American Bulletin, 100(1988): 1181-1204.

DOI: 10.1130/0016-7606(1988)100<1181:piujot>2.3.co;2

Google Scholar

[12] Wu H., Pollard D.D., An experimental study of the relationship between joint spacing and layer thickness., Journal of Structural Geology, 17(1995): 887-905.

DOI: 10.1016/0191-8141(94)00099-l

Google Scholar