Influence of Matrix Structure and Hard Carbide on Abrasive Resistance of Steel Plates

Article Preview

Abstract:

The microstructure of abrasion resistant steel plate usually consists of as quenched martensite, because harder matrix structure improves abrasion resistance of a steel plate. However hard martensitic material has lower formability, which is the important material property for fabricating machine parts. In this paper, a new type of abrasion resistant technique for steel plate is introduced. The steel provides good combination of high abrasion resistance and excellent formability without increasing hardness. The key technology to balance abrasion resistance and formability is the microstructural control of the ferritic matrix structure with dispersed extremely hard carbide particles. Basic research of abrasion mechanism revealed that abrasion resistance is strongly affected by the kind of carbides and the dispersed condition.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

2342-2347

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Rabinowicz, L. A. Dunn and P. G. Russell, Wear, Vol. 4, 1961, pp.345-355.

Google Scholar

[2] T. O. Mulhearn and L. E. Samuel, Wear, Vol. 5, 1962, pp.478-492.

Google Scholar

[3] G. K. Nathan and W. J. D. Jones, Proceedings of Institution of Mechanical Engineers Part 3, Vol. 181, 1966/1967, pp.215-221.

Google Scholar

[4] Z. Xu, Wear, Vol. 253, 2002, pp.597-603.

Google Scholar

[5] J. F. Archard, Journal of Applied Physics, Vol. 24, 1953, No. 8, pp.981-988.

Google Scholar

[6] M. Hirano, K. Tsuji, K. Honma, H. Fujimoto and T. Tatsuno, Journal of Japan Society of Powder and Powder Metallurgy, Vol. 25, 1978, pp.258-261.

DOI: 10.2497/jjspm.25.258

Google Scholar

[7] I. M. Hutchings, Wear, Vol. 70, 1981, pp.269-281.

Google Scholar

[8] P. S. Follansbee, G. B. Sinclair and J. B. Williams, Wear, Vol. 74, 1981/1982, pp.107-122.

Google Scholar

[9] M. M. Khruschov, Wear, Vol. 28, 1974, pp.69-88.

Google Scholar

[10] W. Yan, L. Fang, K. Sun and Y. Xu, Material Science and Engineering A, Vol. 460-461, 2007, pp.542-549.

Google Scholar

[11] Q. L. Wang and P. E. Xu, Wear of Materials, 1985, pp.671-676.

Google Scholar

[12] T. Sadasue, Y. Murota, K. Takahashi, M. Hashimoto and A. Tsuji, Materia Japan, Vol. 42, 2003, No. 42, pp.145-147.

Google Scholar

[13] G. A. Roberts, Transaction of the Metallurgical Society of AIME, Vol. 236, 1966, pp.950-963.

Google Scholar

[14] A. Kasak and T. A. Neumeyer, Wear, Vol. 14, 1969, p.445.

Google Scholar

[15] T. Arai and N. Komatsu, Tetsu-to-Hagane, Vol. 61, 1975, p.241.

Google Scholar

[16] K. Monma R. Maruta, T. Yamamoto and Y. Wakikado, Journal of the Japan Institute of Metals, Vol. 32, 1968, pp.1198-1204.

Google Scholar

[17] R. Hirota, T. Suetsugu, H. Morikawa and K. Itou, Nisshin Technical Report, No. 86, 2005, pp.1-12.

Google Scholar

[18] S. Endo and M. Nagae, ISIJ International, Vol. 36, 1996, No. 1, pp.87-94.

Google Scholar