Improved Mechanical Properties in Ti/Mo-Bearing Martensitic Steel by Precipitation and Grain Refinement

Article Preview

Abstract:

The yield strength and impact energy properties for martensitic steel fabricated by vacuum induction melting, is investigated. It is found that the addition of Ti can improve the yield strength property of the martensitic steel after reheat quenching process, which can be attributed to increase in precipitation hardening from formation of TiC precipitates in the martensitic matrix and a superfine sized (~8μm) grains in the martensitic structure. Moreover, the yield strength can be further enhanced by Mo addition, which can be ascribed to a large amount of freshly nano-sized (1-10nm) precipitates in the final martensitic structure. The experimental and theoretical results on the contribution of TiC precipitates to hardening of the martensitic steel are in excellent agreement. In addition, the impact toughness also has been improved along with yield strength followed by the heat treatment, which can be attributed to the grain refinement and high ratio of high-angle grain boundaries after Mo addition.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

2378-2383

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. M. Abd-Allah, M. S. El-Fadaly, M. M. Megahed and A. M. Eleiche. J. Mater. Eng. Perform 10 (2001) 576.

Google Scholar

[2] E.O. Ezugwu and K.A. Olajire, Tribol. Lett. 12 (2002) 183.

Google Scholar

[3] R. Yilmaz and A. Türkyilmazoglu, Adv. Mater. Res. 23 (2007) 319.

Google Scholar

[4] R. B. Bhavsar, E. Montani, Corros. 98 (1998) 22.

Google Scholar

[5] D. A. Oliver and G. T. Harris, The Iron and Steel Inst. 43, (1952) 46.

Google Scholar

[6] W. T. Davies and B. Hall, The Iron and Steel Inst. 97 (1967) 561.

Google Scholar

[7] T. Angeliu, E. L. Hall, M. Larsen, A. Linsebigler, and C. Mukira, The Inst. of Mater. 708 (1999) 234.

Google Scholar

[8] P. Parameswaran, M. Vijayalakshmi, P. Shankar and V. S. Raghunathan, J. Mater. Sci. 27 (1992) 5426.

Google Scholar

[9] R. Martin, D. and Mari, R. Schaller, Mater. Sci. Eng. A 521-522 (2009) 117.

Google Scholar

[10] Y.Y. Song, D.H. Ping, F.X. Yin, X.Y. Li and Y.Y. Li, Mater. Sci. Eng. A 527 (2010) 614.

Google Scholar

[11] S. K. Bhambri, J. Mater. Sci. 21 (1986) 1741.

Google Scholar

[12] S. Ikeda, T. Sakai and M. E. Fine, J. Mater. Sci. 12 (1977) 675.

Google Scholar

[13] A. A. Barani, F. Li, P. Romano, D. Ponge, D. Raabe, Mater. Sci. Eng. A 463 (2007) 138.

Google Scholar

[14] P. Baviera, S. Harel, H. Garem and M. Grosbras, Scripta Mater. 44 (2001) 2721.

DOI: 10.1016/s1359-6462(01)00963-0

Google Scholar

[15] A. Mani, P. Aubert, F. Mercier, H. Khodja, C. Berthier, P. Houdy, Surf. Coat. Technol. 194 (2005) 190.

Google Scholar

[16] S. B. Li, W. H. Xiang, H. X. Zhai, Y. Zhou, Powder Technol. 185 (2008) 49.

Google Scholar

[17] L. H. Friedman, D. C. Chrzan, Phys. Rev. Lett. 83 (1998) 2715.

Google Scholar

[18] J. C. Cao, Q. L. Yong, Q. Y. Liu, X. J. Sun, J. Mater. Sci. 42 (2007) 10080.

Google Scholar

[19] V. S. Sagaradze, Met. Sci. Heat Treat. 12 (1970) 198.

Google Scholar

[20] M. Diaz-Fuentes, A. Iza-Mendia, I. Gutierrez, Metall. Mater. Trans. 34A (2003) 2505.

Google Scholar

[21] B. Hwang, Y.G. Kim, S. Lee, Y.M. Kim, N.J. Kim, J.Y. Yoo, Metall. Mater. Trans. 36A (2005).

Google Scholar