[1]
C.M. Cepeda-Jiménez, R.C. Alderliesten, O.A. Ruano and F. Carreño: Comp. Sci. Techn. 69 (2009), p.343.
Google Scholar
[2]
C.M. Cepeda-Jiménez, M. Pozuelo, J.M. García-Infanta, O.A. Ruano and F. Carreño: Metal. Mater. Trans A 40A (2009), p.69.
Google Scholar
[3]
C.M. Cepeda-Jiménez, P. Hidalgo, M. Pozuelo, O.A. Ruano and F. Carreño: Metal. Mater. Trans. A. 41A (2010), p.61.
Google Scholar
[4]
C.M. Cepeda-Jiménez, P. Hidalgo, M. Pozuelo, O.A. Ruano and F. Carreño: Mater. Sci. Eng. A A527 (2010), p.2579.
Google Scholar
[5]
C.M. Cepeda-Jiménez, P. Hidalgo, M. Carsí, O.A. Ruano and F. Carreño: Mater. Sci. Eng. A A528 (2011), p.3161.
Google Scholar
[6]
M. Carsí, F. Peñalba, O.A. Ruano and O.D. Sherby: Metall. Mater. Trans. A 28A (1997), p. (1913).
Google Scholar
[7]
J.J. Urcola and M. Fuentes: Rev. Metal. Madrid 16 (1980), p.263.
Google Scholar
[8]
D.S. Fields and W.A. Backhofen: Proc. ASTM 57 (1957), p.1259.
Google Scholar
[9]
F. Garofalo: Fundamentals of Creep and Creeps Rupture in Metals (MacMillan, New York, 1965).
Google Scholar
[10]
I. Rieiro, M. Carsí and O.A. Ruano: Mater. Sci. Technol. 25 (2009), p.995.
Google Scholar
[11]
I. Rieiro, O.A. Ruano, M. Eddahbi and M. Carsí: J. Mater. Proc. Technol. 78 (1998), p.177.
Google Scholar
[12]
I. Rieiro and M. Carsí: Rev. Metal. Madrid 32 (1996), p.321.
Google Scholar
[13]
D.M. Bates and D.G. Watts: Non Linear Regression Analysis and its Applications (John Wiley & Sons, New York, 1986).
Google Scholar
[14]
O.D. Sherby, R.H. Klundt and A.K. Miller: Metal. Trans. A 8A (1977), p.843.
Google Scholar
[15]
H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps (Pergamon Press, Oxford, U.K., 1982).
Google Scholar
[16]
F. Carreño and O.A. Ruano: Acta Mater. 46 (1998), p.159.
Google Scholar
[17]
Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark and D.R. Barker: Metal. Trans. A, 15A (1984), p.1883.
Google Scholar
[18]
Mathematics for Dynamic Modelling, ed. by J. Beltrami, Academic Press, Boston, (1987).
Google Scholar
[19]
J. Lasalle and L. Solomon: Stability by Lyapunov's Direct Method (Academic Press, New York, 1961). Fig. 1. Stress vs. strain curves for the Al 2024-T351 alloy deformed in torsion at ε=4. 5 s-1. Fig. 2. Zener parameter, Z = exp(Q/RT), as a function of sinh (ασ). Table I. Torsion tests to failure with m=0. 13 and θ=0. T0 (ºC) T0 (K) έ (s-1) G peak (Nm) s peak (MPa) e max 276 270 284 284 549 543 557 557.
Google Scholar
[6]
7 205 221 217 214.
Google Scholar
[1]
9 307 313 322 318 580 586 595 591.
Google Scholar
[6]
3 182 192 192 201.
Google Scholar
[1]
8 361 365 356 362 634 638 629 635.
Google Scholar
[5]
1 131 137 150 163.
Google Scholar
[2]
6 409 407 407 410 682 680 680 683.
Google Scholar
[4]
0 93 105 115 128.
Google Scholar
[2]
8 467 469 468 466 740 742 741 739.
Google Scholar
[3]
2 70 80 89 102.
Google Scholar
[2]
7 Fig. 3. Two-dimensional map of constant forming efficiency contours corresponding to a projection on a ε, T plane. Fig. 4. Two-dimensional representation of the 1st Lyapunov criterion as a function of strain rate and temperature. Fig. 5. Two-dimensional representation of the 2nd Lyapunov criterion as a function of strain rate and temperature.
DOI: 10.17816/kazmj90942-51576
Google Scholar