Behavior of Pearlite in ThermoMechanical Processing and Service-Historical Perspective

Article Preview

Abstract:

After 1780, wrought iron (WI) provided a structural material and steel was cherished for its hardness and cutting qualities. When available in quantity after ~1860, steel’s structural strength and wear resistance were recognized in normalized condition in armor plates, rails and drawn wire. The responsible microstructure component was pearlite in which the lamellar spacing of ferrite and carbides could be refined by simple bulk heat treatments that are practiced with small modification until today. The strength and toughness rose as the layer thickness decreased the ferrite slip length and the carbide cracking. In hot working, the strength rises as much as 200% (while ductility falls) with fraction of pearlite; below the transus compared to austenite just above it, strengths are equal at about 0.7C (ductilities equal at 0.35C).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

2776-2781

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.J. McQueen, (THERMEC 2009 [invited], T. Chandra, ed., Berlin) Mat. Sci. Forum, 638-642 (2010), 3380-3387.

Google Scholar

[2] H.J. McQueen, (Steel Processing, Product & Applications, R. Asafani, ed. M S & T'09, Pittsburgh, CD, pp.1283-1293. ) AIST Steel Properties and Applications Conf. Proc., K. O Finlay et al., eds., AIST Warrendale, PA (2009), pp.515-525.

Google Scholar

[3] H.J. McQueen (Thermec 2006 [invited], Vancouver), Mat. Res. Forum, 539-543 (2006), 4397-4404.

Google Scholar

[4] F.C. Thompson, Sorby Centennial, Symposium on History of Metallurgy, C.S. Smith, Gordon and Breach Science Publishers, N.Y. 1965, pp.99-108.

Google Scholar

[5] H. Moore, ibid, pp.67-79. - - E.C. Bain, ibid, pp.121-138.

Google Scholar

[6] Making, Shaping, Treating of Steel, United States Steel (7th ed. ), Pittsburg, 1957 (pearlite, pp.788-806).

Google Scholar

[7] H.J. McQueen, CIM Magazine, 3 [Mar. & May] (2008), 70-71, 82-83; electronic CIM Bulletin (2008), 11-18, 19-28. www. cim. org.

Google Scholar

[8] H.J. McQueen, CSME Bulletin SCGM, Winter (2009), 12-18.

Google Scholar

[9] M. Umemoto, Y. Toduka and T. Tsuchiya (Thermec 2003), Mat. Sci. Forum, 426-432 (2003), 859-864.

Google Scholar

[10] D. Lesuer, C. Syn, O. Sherby and D.W. Kum (Thermec 2003), Mat. Sci. Forum 426-432 (2003), 841-846.

Google Scholar

[11] T.K.D.H. Bhadeshia, Hot Workability of Steels and Light Alloys, H.J. McQueen, et al., eds., Met. Soc. CIM Montreal, (1996), pp.543-555.

Google Scholar

[12] T. Matuszewski, P.M. Machmeier and H.J. McQueen, Metall. Trans., 25A (1994), 827-837.

Google Scholar

[13] H.J. McQueen C.A.C. Imbert, Deformation, Processing and Properties of Structural Materials, E.M. Taleff et al. eds., TMS-AIME Warrendale PA. (2000), pp.79-92.

Google Scholar

[14] D.L. Bourell and H.J. McQueen, J. Mat. Shaping Tech., 5 (1987), 53-73.

Google Scholar

[15] J.L. Robbins, O.C. Shepard and O.D. Sherby, ASM Trans. Q, 60 (1967), 205-16.

Google Scholar

[16] R.A. Reynolds and W.J. McG. Tegart, J. Iron Inst., 200 (1962), 1044-59.

Google Scholar

[17] O.D. Sherby, M.J. Harrigan, L. Chamagne, C. Sauve, ASM Trans Q., 62 (1969), 575-80.

Google Scholar

[18] M.J. Harrigan and O.D. Sherby, Mater. Sci. Eng., 7 (1971), 177-189.

Google Scholar

[19] E.A. Chojnowsli and W.J. McG. Tegart, Metals Sci. J., 2 (1968), 14-18.

Google Scholar

[20] D.F. Lupton and D.H. Warrington, J. Met. Sci., 6 (1972), 200-204.

Google Scholar

[21] H. Masumoto, K. Sugino, S. Nisida, R. Kurihara and S. Matsuyama, Rail Steels – Developments, Processing and Use, D.H. Stone and G.G. Knupp, ASTM, Philadelphia PA, (1978), pp.233-253.

DOI: 10.1520/stp27111s

Google Scholar

[22] E. Gervais and H.J. McQueen, Static and Dynamic Stress Distributions in a Plate Subjected to Hertizian Compression by a Cilinder, Can. Metal. Quart., 1976, Vol. 15, 97-101.

Google Scholar

[23] E. Gervais and H.J. McQueen, Fatigue Damage Induced in a Steel Plate by Oscillatory Hertzian Loading, J. Iron Steel Inst., 1972, Vol. 210, 189-198.

Google Scholar

[24] G.W. Delvecchio, J.E. Hood, D.B. McCutcheon, Micon 78: Optimization of Processing, Properties through Microstructured Control, H. Abrams et al., eds., ASTM (Pub. 672), Philadelphia, PA, (1979), pp.145-168.

DOI: 10.1520/stp36868s

Google Scholar

[25] H.J. McQueen, S. Yue, N.D. Ryan and E. Fry, Advanced Materials and Technologies, L.A. Dobrzanski, ed., (Silesian Tech. Univ., Gliwice, Poland, 1995), pp.295-332, J. Mat. Proc. Tech., 53 (1995), 293-310.

Google Scholar

[26] H.J. McQueen, Pipelines for the 21st Century, W. Chen, ed., Met. Soc. CIM, Montreal (2005), pp.101-117.

Google Scholar

[27] V.M. Khlestov, E.V. Konopleva and H.J. McQueen, Can. Metal. Quart., 35 (1996), 169-180.

Google Scholar

[28] V.M. Khlestov, E.V. Konopleva and H.J. McQueen, Can. Metal. Quart., 40 (2001), 221-233.

Google Scholar

[29] J.D. Boyd, P. Zhao, T. Liu, M. Gyorffy, Thermomechanical Processing of Steels, Met. Soc. CIM, Montreal (2000), pp.475-488.

Google Scholar

[30] V.M. Khlestov, E.V. Konopleva and H.J. McQueen, Mat. Sci. Tech., 22 (2006), 242-246.

Google Scholar

[31] V.M. Khlestov, H.J. McQueen, G.A. Cingara and E.V. Konopleva, J. Mat. Eng. Perform., 14 (2005), 179-187.

Google Scholar

[32] V.M. Khlestov, H.J. McQueen and E.V. Konopleva, Advanced Steels, J. Szpunar and H. Li, eds., Met. Soc. CIM Montreal (2006), PP. 83-97.

Google Scholar

[33] J.L. Uvira, D.B. Clay, and J.D. Embury, Met. Eng. Quart., 10 (2), 1970, 35-39.

Google Scholar

[34] T. Tarui, S. Konno and T. Takashi (Thermec 2003), Mat. Sci. Forum 426-432 (2003), 829-834.

Google Scholar