Precipitation in Al-Alloy 6016 – The Role of Excess Vacancies

Article Preview

Abstract:

6xxx Al alloys owe their superior mechanical properties to the precipitation of finely dispersed metastable β´´ precipitates. These particles are formed in the course of optimized heat treatments, where the desired microstructure is generated in a sequence of precipitation processes going from MgSi co-clusters and GP zones to β´´ and β´ precipitates and finally to the stable β and Si diamond phases. The entire precipitation sequence occurs at relatively low temperatures (RT to approx. 200 °C) and is mainly controlled by the excess amount of quenched-in vacancies, which drive the diffusional processes at these low temperatures. Very recently a novel model for the prediction of the excess vacancy evolution controlled by the annihilation and generation of vacancies at dislocation jogs, grain boundaries and Frank loops was developed and implemented in the thermo-kinetic software MatCalc. In the present work, we explore the basic features of this model in the simulation of the excess vacancy evolution during technological heat treatments. The focus of this article lies on the effect of vacancy supersaturation during different heat treatment steps, such as quenching, heating, natural and artificial aging.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

317-322

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Vissers, M. A. van Huis, J. Jansen, H. W. Zandbergen, C.D. Marioara, S.J. Andersen: Acta Mater. 55 (2007), p.3815.

DOI: 10.1016/j.actamat.2007.02.032

Google Scholar

[2] C. Wolverton: Acta Mater. 55 (2007), p.5867.

Google Scholar

[3] M. A. van Huis, M. H. F Sluiter, J. H. Chen, H. W. Zandbergen: Phys. Rev. B 76, 174113 (2007).

Google Scholar

[4] T. Sato, S. Hirosawa, K. Hirose and T. Maeguchi: Metall. Mater. Trans. Vol. 34A (2003), p.2745.

Google Scholar

[5] J. Banhart, M.D.H. Lay, C.S.T. Chang, A.J. Hill: Physical Review B, Vol. 83 (2011), p.014101.

Google Scholar

[6] S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, P.J. Uggowitzer: Acta Mater, (2011), in print.

Google Scholar

[7] C. S. T. Chang, I. Wieler, N. Wanderka, J. Banhart: Ultramicroscopy 109 (2009), p.585.

Google Scholar

[8] J. D. Bryant: Metall Mater Trans A , Vol. 30, (1999), p. (1999).

Google Scholar

[9] S. Esmaeili, D.J. Lloyd, W.J. Poole: Acta Materialia, 51 (2003), p.3467.

Google Scholar

[10] H.S. Zurob, H. Seyedrezai: Scripta Materialia, 61(2009), p.141.

Google Scholar

[11] F.D. Fischer, J. Svoboda, F. Appel, E. Kozeschnik: Modelling of Excess Vacancy Annihilation at Different Types of Sinks. Acta Materialia, (2011) in print.

DOI: 10.1016/j.actamat.2011.02.020

Google Scholar

[12] http: /www. matcalc. at.

Google Scholar

[13] R.W. Cahn, P. Haasen: Physical metallurgy, Fourth, revised and enhanced edition Vol. 2, Elsevier Science B.V. (1996).

Google Scholar

[14] A. Falahati, E. Povoden-Karadeniz, P. Lang, P. Warczok, E. Kozeschnik: Int. J. Mater. Res. Vol. 101 (2010), p.1089.

Google Scholar

[15] Thermodynamic database for Al-Systems, (mc_al_v0. 022. tdb), Institute of Materials Science and Technology, Vienna University of Technology, Austria.

Google Scholar

[16] Mobility database for Al-Systems, (mc_al_v1. 015. pdb), Institute of Materials Science and Technology, Vienna University of Technology, Austria.

Google Scholar

[17] K.G.F. Janssens, D. Raabe, E. Kozeschnik, M.A. Miodownik, B. Nestler: Elsevier Academic Press (2007).

Google Scholar

[18] E. Kozeschnik, J. Svoboda, P. Fratzl, F.D. Fischer: Mater. Sci. Eng. A. 385 (2004) 157.

Google Scholar

[19] H.S. Hasting, A.G. Frøseth, S.J. Andersen, R. Vissers, J.C. Walmsley, C.D. Marioara, F. Danoix, W. Lefebvre, R. Holmestad: J. Appl. Phys. 106 (2009), p.123527.

DOI: 10.1063/1.3269714

Google Scholar