Combined Effect of Deformation and Precipitation on Tensile Properties of an Al-Mg-Si Alloy

Article Preview

Abstract:

In the present work we report on the effect of pre-deformation followed by/together with artificial aging on the mechanical properties as strength, ductility and work hardening of an Al-Mg-Si alloy (AA6060). The AA6060 alloy was initially cast, homogenized and extruded according to standard industrial practice. The extruded material was then subjected to a solution heat treatment and subsequently artificially aged after (sequential mode) and during (simultaneous mode) various combinations of deformation (0-10%) and heat treatments. The aging behaviour and mechanical properties have been characterized in terms of Vickers hardness and tensile testing. It is found that small, even very small, pre-deformations strongly affect the aging behaviour and associated tensile properties. Moreover, it is found, that with the carefully chosen parameters of simultaneous deformation and aging one can reach mechanical properties superior to those following pre-deformation and subsequent aging (sequential mode). The results are compared and discussed in view of differences in processing conditions and microstructure characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

351-356

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation: