Development of Grain Refinement in Aluminium Field

Article Preview

Abstract:

Some progresses of grain refinement in aluminium field in our group are involved in this paper. We invented a new preparation method of Al-Ti-B grain refiner with the application of high-intensity ultrasound in the preparation reaction. Owing to the optimization of TiB2 particles morphology in the prepared grain refiner, the commercial purity aluminium grains can be refined as small as 45μm, which is superior to the limiting level of the present commercial grain refiner, 120μm. First-principles calculations on the Al/TiB2 interface prove that the larger Al/TiB2 interfacial energy than that between α-Al and aluminium melt is responsible for the poor heterogeneous nucleation of α-Al on TiB2 particles with only TiB2 particles in melt. When there is redundant solute Ti in the melt, it is theoretically revealed that the spontaneous segregation of solute Ti on TiB2 particles plays an important role in the heterogeneous nucleation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

402-407

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.S. Murty, S.A. Kori and M. Chakrabort: Int. Mater. Rev. Vo. 47 (2002), p.3.

Google Scholar

[2] T.E. Quested: Mater. Sci. Technol. Vol. 20 (2004), p.1357.

Google Scholar

[3] N. Iqbal, N.H. van Dijk, S.E. Offerman, N. Geerlofs, M.P. Moret, L. Katgerman and G.J. Kearley: Mater. Sci. Eng. A Vol. 416 (2006), p.18.

DOI: 10.1016/j.msea.2005.10.045

Google Scholar

[4] P.S. Mohanty and J.E. Gruzleski: Acta Mater. Vol. 44 (1996), p.3749.

Google Scholar

[5] M.A. Easton and D.H. StJohn: Acta Mater. Vol. 49 (2001), p.1867.

Google Scholar

[6] A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans and D.J. Bristow: Acta Mater. Vol. 48 (2000), p.2823.

Google Scholar

[7] X.F. Liu, Z.G. Zhang, Z. Gao and X.F. Bian: JOM Vol. 52 (2000), p.47.

Google Scholar

[8] A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans and D.J. Bristow: Acta Mater. Vol. 48 (2000), p.2823.

Google Scholar

[9] A.L. Greer: Phil. Trans. R. Soc. Lond. A Vol. 361 (2003), p.479.

Google Scholar

[10] M. Easton and D. StJohn: Metall. Mater. Trans. A Vol. 30 (1999), p.1613.

Google Scholar

[11] N. Iqbal, N. H. van Dijk, S. E. Offerman, M. P. Moret, L. Katgerman and G. J. Kearley: Acta Mater. Vol. 53 (2005), p.2875.

DOI: 10.1016/j.actamat.2005.02.045

Google Scholar

[12] P. Schumacher, A. L. Greer, J. Worth, P. V. Evans, M. A. Kearns, P. Fisher, and A. H. Green: Mater. Sci. Technol. Vol. 14 (1998), p.394.

Google Scholar

[13] Y. F. Han, Y. B. Dai, D. Shu, J. Wang and B. D. Sun: J. Phys.: Condens. Matter Vol. 18 (2006), p.4197.

Google Scholar

[14] Y.F. Han, K. Li, J. Wang, D. Shu and B.D. Sun: Mater. Sci. Eng. A Vol. 405 (2005), p.306.

Google Scholar

[15] C. Limmaneevichitr and W. Eidhed: Mater. Sci. Eng. A Vol. 349 (2003), p.197.

Google Scholar

[16] P. Cooper, A. Hardman and D. Boot: Light Metal (2003), p.923.

Google Scholar

[17] L.Q. Ma, F. Chen and G.J. Shu: J. Southeast Univ. Vol. 25 (1995), p.50.

Google Scholar

[18] W. Zhang and J. R. Smit: Phys. Rev. B Vol. 61 (2000), 16883.

Google Scholar

[19] D. J. Siegel, L. G. Hector Jr. and J. B. Adams: Phys. Rev. B Vol. 67 (2003), 092105.

Google Scholar

[20] N. Eustathopoulos, L. Coudurier, J. C. Joud and P. Desré: J. Cryst. Growth Vol. 33 (1976), p.105.

Google Scholar