Nanofragmentation Controlled by a Shock-Induced Phase Transition in Mullite Related Ceramics and its Application

Article Preview

Abstract:

Mullite (3Al2O3•2SiO2) undergoes a phase transition at 30 GPa with forming aligned nanocrystalline fragments in an amorphous phase. The direction of the crystal axes of mullite nanocrystals with the grain sizes less than 10 nm is that preserved from the starting specimen. To clarify the mechanism of the nanofragmentation in mullite, compositional and structural effects are investigated by comparative studies using several mullite-related aluminosilicates. Consequently, we proposed that the oxygen vacancies in the crystal structure in mullite play an important role to formation of the nanofragmentation textures. Also, we performed impact experiments using mullite as a bumper material, simulating a Whipple bumper shield for spacecrafts. Damage of impact could be considerably less with mullite bumper shield than with aluminum alloy bumper shield, suggesting that mullite could be an candidate for a Whipple bumper materials in the next generation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

717-722

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Bourne, J. Millett, Z. Rosenberg, N. Murray, J. Mech. Phys. Solids 46 (1998) 1887.

Google Scholar

[2] D. E. Grady, Mech. Mater. 29 (1998) 181.

Google Scholar

[3] M. W. Chen, J. W. McCauley, D. P. Dandeker, N. K. Bourne, Nat. Mater. 5 (2006) 614.

Google Scholar

[4] T. Sekine, H. L. He, T. Kobayashi, M. Zang, F. F. Xu, Appl. Phys. Lett. 76 (2000) 3706.

Google Scholar

[5] T. Atou, K. Kusaba, K. Fukuoka, M. Kikuchi, Y. Syono, J. Solid State Chem. 89 (1990) 378.

Google Scholar

[6] Y. Syono, K. Kusaba, T. Atou, and K. Fukuoka, Shock Waves (Ed: Takayama K) (Springer, Berlin) (1992) 121-128.

Google Scholar

[7] N. Kawai, T. Atou, S. Ito, K. Yubuta, M. Kikuchi, K. G. Nakamura, K, Kondo, Adv. Mater. 19 (2007) 2375.

DOI: 10.1002/adma.200602380

Google Scholar

[8] I. A. Aksay, D. M. Dabbs, M. Savikaya, J. Am. Ceram. Soc. 74 (1991) 2343.

Google Scholar

[9] H. Schneider, K. Okada, J. Pask, Mullite and Mullite Ceramics (Wiley, New York) (1994).

Google Scholar

[10] N. Kawai, K. G. Nakamura, K. Kondo, J. Appl. Phys. 96 (2004) 4126.

Google Scholar

[11] W. A. Deer, R. A. Howie, J. Zussman, Orthosilicates Vol. 1A (Longman, London and New York) (1982) 719-758.

Google Scholar

[12] T. Atou, N. Kawai, S. Ito, K. Yubuta, M. Kikuchi, J. Appl. Phys. 108 (2010) 093523.

Google Scholar

[13] T. Atou, N. Kawai, K. Kondo, S. Ito, M. Kikuchi, Proceedings of 11th HVIS in press.

Google Scholar

[14] T. Hongo, T. Atou, S. Ito, K. Yubuta, M. Kikuchi, K. G. Nakamura, K. Kusaba, K. Fukuoka, K. Kondo, Phys. Rev. B76, (2007) 104114.

Google Scholar

[15] T. Goto, Y, Syono, Materials science of the Earth's Interior (Ed: Sunagawa I) (Terra, Tokyo) (1984) 605.

Google Scholar

[16] T. J. Ahrens, D. L. Anderson, A. E. Ringwood, Rev. Geophys. 7 (1969) 667.

Google Scholar

[17] D. Stöffler, Fortschr. Mineral. 49 (1972) 50.

Google Scholar

[18] O. Goltrant, H. Leroux, J. C. Doukhan, P. Cordier, Phys. Earth Planet. Interiors 74 (1992) 219.

Google Scholar

[19] M. Kitamura, T. Goto, Y. Syono, Contrib. Mineral Petrol. 61 (1977) 299.

Google Scholar

[20] N. Kawai, T. Atou, K. G. Nakamura, K. Kond, S. Ito, K. Yubuta, M. Kikuchi, J. Appl. Phys. 106 (2009) 023525.

Google Scholar

[21] S. Bustingorry, E. A. Jagla, Phys. Rev. B69 (2004) 064110.

Google Scholar

[22] F. L. Whipple, Astronomical J. 1161 (1947) 131.

Google Scholar

[23] E. L. Christiansen, J. L. Crews, J. E. Williamsen, J. H. Robinson, A. M. Nolen, Int. J. Impact Eng. 17 (1995) 217.

Google Scholar

[24] N. Kawai, Y. Harada, M. Yokoo, T. Atou, K. G. Nakamura, K. Kondo, Int. J. Impact Eng. 35 (2008) 1612.

Google Scholar