[1]
O.L. Valerio-Flores, L.E. Murr, V.S. Hernandez, S.A. Quinodes, Observations and simulations of the low velocity-to-hypervelocity impact crater transition for a range of penetrator densities into thick aluminum targets, J. Mat. Sci. 39 (2004).
DOI: 10.1023/b:jmsc.0000043597.72588.d1
Google Scholar
[2]
V.S. Hernandes, L.E. Murr, I.A. Anchondo, Experimental observations and computer simulations for metallic projectile fragmentation and impact crater development in thick metal targets, Int. J. Impact Eng. 32 (2006) 1981–(1999).
DOI: 10.1016/j.ijimpeng.2005.06.004
Google Scholar
[3]
Space Systems-Test procedures to evaluate spacecraft material ejecta upon hypervelocity impact (ISO-CD-11227).
DOI: 10.3403/30237422
Google Scholar
[4]
K. Sugahara, K. Aso, Y. Akahoshi, T. Koura, T. Narumi, Intact measurement of fragments in ejecta due to hypervelocity impact, Proc. 60th Int. Astronautical Cong., (2009) IAC-09-A6. 3. 06.
Google Scholar
[5]
J.M. Siguier, J.C. Mandeville, Test procedures to evaluate spacecraft materials ejecta upon hypervelocity impact, Proc. IMechE G 221 (2007) 969–974.
DOI: 10.1243/09544100jaero236
Google Scholar
[6]
D. Numata, T. Kikuchi, M. Sun, K. Kaiho, K. Takayama, Experiment study of ejecta composition in impact phenomenon, Proc. 26th Int. Symp. Shock Waves, (2007) Part X.
DOI: 10.1007/978-3-540-85181-3_4
Google Scholar
[7]
Structures and properties of aluminum, Japan Institute of Light Metals ed., 1991 478 (in Japanese).
Google Scholar
[8]
A. Fujiwara, G. Kamimoto, A. Tsukamoto, Expected shape distribution of asteroids obtained from laboratory impact experiments, Nature 272 (1978) 602–603.
DOI: 10.1038/272602a0
Google Scholar
[9]
F. Capaccioni, P. Cerroni, M. Coradini, P. Farinella, E. Flamini, G. Martelli, P. Paolicchi, P.N. Smith, V. Zappala, Shapes of asteroids compared with fragments from hypervelocity impact experiments, Nature 308 (1984) 832–834.
DOI: 10.1038/308832a0
Google Scholar
[10]
T. Michikami, A. Nakamura, N. Hirata, The shape distribution of boulders on Asteroid 25143 Itokawa: Comparison with fragments from impact experiments, Icarus 207 (2010) 277–284.
DOI: 10.1016/j.icarus.2009.10.008
Google Scholar
[11]
P.C. Thomas, J. Veverka, M.S. Robinson, S. Murchie, Shoemaker crater as the source of most ejecta blocks on the Asteroid 433 Eros, Nature 413 (2001) 394–396.
DOI: 10.1038/35096513
Google Scholar