Grain Refinement Mechanism in Al–4B Master Alloy Added Pure Mg

Article Preview

Abstract:

Al–4B master alloy has been prepared by the reaction of fluoride salt KBF4 with molten Al and different amounts of this master alloy (0.5, 1, 1.5 and 2 wt%) has been added to pure Mg to study in detail its effect on the grain refinement of pure Mg. Considerable reduction in grain size from 1300 to 210μm is obtained and maximum reduction is observed with 2 wt% master alloy addition. The grain refinement is caused by both the growth restriction effect of Al and the presence of potent AlB2 nucleant particles. Improvement in mechanical properties is obtained with Al–4B master alloy and is attributed to increase in grain boundary area due to the grain refinement and the particle strengthening due to AlB2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-166

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Du, J. Yang, M. Kuwabara, W. Li, J. Peng, Improvement of grain refining efficiency for Mg– Al alloy modified by the combination of carbon and calcium, J. Alloys. Compd. 470 (2009) 134- 140.

DOI: 10.1016/j.jallcom.2008.02.052

Google Scholar

[2] A.A. Luo, Recent magnesium alloy development for elevated temperature applications, Int. Mater. Rev. 49 (2004) 13-30.

Google Scholar

[3] L. Lu, A.K. Dahle, D.H. StJohn, Grain refinement efficiency and mechanism of aluminium carbide in Mg–Al alloys, Scr. Mater. 53 (2005) 517–522.

DOI: 10.1016/j.scriptamat.2005.05.008

Google Scholar

[4] J. Du, J. Yang, M. Kuwabara,W. Li, J. Peng, Effect of strontium on the grain refining efficiency of Mg–3Al alloy refined by carbon inoculation, J. Alloys. Compd. 470 (2009) 228–232.

DOI: 10.1016/j.jallcom.2008.03.012

Google Scholar

[5] D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Z. Hildebrand, Grain refinement of magnesium alloys, Metal. Mater. Trans. A 36A (2005) 1669- 1679.

DOI: 10.1007/s11661-005-0030-6

Google Scholar

[6] B.S. Murty, S.A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying, Inter. Mater. Rev. 47 (2002) 3-28.

DOI: 10.1179/095066001225001049

Google Scholar

[7] P.S. Mohanty, J.E. Gruzleski, Grain refinement mechanisms of hypoeutectic Al-Si alloys, Acta. Mater. 44 (1996) 3749-3760.

DOI: 10.1016/1359-6454(96)00021-3

Google Scholar

[8] S.A. Kori , B.S. Murty, M. Chakraborty, Development of an efficient grain refiner for Al–7Si alloy, Mater. Sci. Eng. A 280 (2000) 58–61.

DOI: 10.1016/s0921-5093(99)00656-5

Google Scholar

[9] A.K. Prasada Rao, K. Das, B.S. Murty, M. Chakraborty, Effect of grain refinement on wear properties of Al and Al–7Si alloy, Wear 257 (2004) 148–153.

DOI: 10.1016/j.wear.2003.10.017

Google Scholar

[10] P.S. Mohanty, J.E Gruzleski, Mechanism of grain refinement in aluminium, Acta. Mater. 43 (1995) 2001-2012.

DOI: 10.1016/0956-7151(94)00405-7

Google Scholar

[11] L. Lu, A.K. Dahle, D.H. StJohn, Heterogeneous nucleation of Mg–Al alloys, Scr. Mater. 54 (2006) 2197-2201.

DOI: 10.1016/j.scriptamat.2006.02.048

Google Scholar

[12] Y.C. Lee, A.K. Dahle, D.H. StJohn, The role of solute in grain refinement of magnesium, Metal. Mater. Trans. A 31A (2000) 2895-2906. 13] N. Nishino, H. Kawahara, Y. Shimizu, H. Iwahori, in: K.U. Kainer (Ed.), Magnesium Alloys and their Applications, Wiley–VCH, Inc., Weinheim, 2000, p.59–64.

DOI: 10.1002/3527607552.ch10

Google Scholar

[14] M.A Easton, D.H StJohn, A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles, Acta. Mater. 49 (2001) 1867-1878.

DOI: 10.1016/s1359-6454(00)00368-2

Google Scholar

[15] H. Ding, X. Liu, The grain refinement efficiency of Ni–C on Mg–Al alloys, Mater. Lett. 63 (2009) 635-637.

DOI: 10.1016/j.matlet.2008.12.012

Google Scholar