[1]
S. Floreen, The physical metallurgy of maraging steels, Metall. Reviews 13 (1968) 115-128.
DOI: 10.1179/mtlr.1968.13.1.115
Google Scholar
[2]
A. Magnee, J.M. Drapier, J. Dumont, D. Coutsouradis and L. Habraken, Cobalt-containing High-strength Steels, Centre D'Information du Cobalt, Brussels, (1974).
Google Scholar
[3]
S. Floreen, G.R. Speich, Some observations on the strength and toughness of maraging steels, Trans. ASM 57 (1964) 715-726.
Google Scholar
[4]
G.R. Speich, D.S. Dabkowski and L.F. Porter, Strength and toughness of Fe-10Ni alloys containing C, Cr, Mo, and Co, Metall. Trans. 4 (1973) 303-315.
DOI: 10.1007/bf02649630
Google Scholar
[5]
K.J. Handerhan, W.M. Garrison, Jr. and N.R. Moody, A comparison of the fracture behavior of two heats of the secondary hardening steel AF1410, Metall. Trans. A 20A (1989) 105-123.
DOI: 10.1007/bf02647498
Google Scholar
[6]
P.M. Novotny, An aging study of Carpenter AerMetÒ100 alloy, in: G. Krauss, P.E. Repas (Eds. ), Proceedings of the G.R. Speich Symposium, Iron and Steel Society, Warrendale, PA, 1992, pp.215-236.
Google Scholar
[7]
J.M. Hodge, R.D. Manning, The effect of ferrite grain size on notch toughness, Metals Transactions, Trans. AIME 185 (1949) 233-240.
DOI: 10.1007/bf03398103
Google Scholar
[8]
J.A. Rinebolt, W.J. Harris, Jr., Effect of alloying elements on notch toughness of pearlitic steels, Trans. ASM 43 (1951) 1175-121.
Google Scholar
[9]
W. Jolley, Effect of Mn and Ni on impact properties of Fe and Fe-C alloys, JISI 206 (1968) 170-173.
Google Scholar
[10]
S. Floreen, H.W. Hayden and T.M. Devine, Cleavage initiation in Fe-Ni alloys, Metall. Trans. 2 (1971) 1403-1406.
DOI: 10.1007/bf02913367
Google Scholar
[11]
S. Floreen, The properties of low-carbon iron-nickel-chromium martensites, Trans. Metall. Soc. AIME, 236 (1966) 1429-1440.
Google Scholar
[12]
S. Floreen and H.W. Hayden, The effect of noble metal additions on the toughness of iron-carbon alloys, Trans. Metall. Soc. AIME, 239 (1967) 1405-1407.
Google Scholar
[13]
N.S. Stoloff, R.G. Davies and R.C. Ku, Low-temperature yielding and fracture in Fe-Co and Fe-V alloys, Trans. Metall. Soc. AIME, 233 (1965) 1500-1508.
Google Scholar
[14]
D.R. Squires, F.G. Wilson and E.A. Wilson, The influence of Mo and Co on the embrittlement of an Fe-Ni-Mn alloy, Metall. Trans., 5 (1974) 2569-2578.
DOI: 10.1007/bf02643878
Google Scholar
[15]
D.R. Squires, E.A. Wilson, Effect of cobalt on impact toughness of steels, Mat. Sci. and Tech., 10 (1994) 52-55.
Google Scholar
[16]
A.R. Marder, G. Krauss, Effect of morphology on the strength of lath martensite, Proceedings of the Second International Conference on the Strength of Metals and Alloys, ASM, Metals Park, (1970), pp.822-823.
Google Scholar
[17]
G.R. Brophy, A.J. Miller, The metallography and heat treatment of 8 to 10 % nickel steel, Trans. ASM, 41(1949) 1185-1203.
Google Scholar
[18]
C.W. Marschall, R.F. Hehemann and A.R. Troiano, The characteristics of 9 % nickel low carbon steel, Trans. ASM, 55 (1962) 135-148.
Google Scholar
[19]
J.I. Kim, H. Jae Kim and J.W. Morris, Jr., The role of constituent phases in determining the low temperature toughness of 5. 5Ni cryogenic steel, Metall. Trans. A, 15A (1984) 2213-2219.
DOI: 10.1007/bf02647104
Google Scholar
[20]
J.I. Kim, C.K. Syn and J.W. Morris, Jr., Microstructural sources of toughness in QLT-treated 5. 5Ni cryogenic steel, Metall. Trans. A, 14A (1983) 93-103.
DOI: 10.1007/bf02643742
Google Scholar
[21]
R.T. Ault, R.B. Holtman and J.R. Myers, Heat treatment of a Cr-Mo-Co martensitic stainless steel for optimum combination of strength, toughness and stress corrosion resistance, Trans. ASM, 61 (1968) 75-84.
Google Scholar
[22]
J.R. Holloway and A.D. Hopkins, Effect of cobalt on the fracture toughness of a nickel-molybdenum hot-work die steel, JISI, 209 (1971) 813-818.
Google Scholar
[23]
Warren M. Garrison, Jr., A comparison of the effects of cobalt, silicon, nickel and aluminum on the tempering response of a medium chromium secondary hardening steel, ISIJ International, 46 (2006) 782-784.
DOI: 10.2355/isijinternational.46.782
Google Scholar
[24]
W.M. Garrison, Jr., Influence of silicon on strength and toughness of 5 wt-% Cr secondary hardening steel, Mat. Sci. and Tech., 3 (1987) 256-259.
DOI: 10.1179/mst.1987.3.4.256
Google Scholar
[25]
Piyamanee Komolwit, The effect of cobalt and carbon on the microstructure and mechanical properties of martensitic precipitation strengthened stainless steels, Ph.D. Thesis, Carnegie Mellon University, (2009).
Google Scholar
[26]
Choong Hwa Yoo, Hyuck Mo Lee, Jin W. Chan and John W. Morris, Jr., Metall. and Mat. Trans. A, 27A, (1996) 3466-3472.
Google Scholar
[27]
Raghavan Ayer, P.M. Machmeier, Transmission electron microscopy examination of hardening and toughening phenomena in AerMet 100, Metall. Trans. A, 224A (1993) 1943-(1955).
DOI: 10.1007/bf02666329
Google Scholar
[28]
M. Srinivas, G. Malakondaiah and P. Rama Rao, Influence of solute additions on the fracture behavior of Armco iron, Proc. R. Soc. Lond. A, 447 (1994) 223-236.
DOI: 10.1098/rspa.1994.0137
Google Scholar
[29]
M. Srinivas, G. Malakondaiah and P. Rama Rao, On the enhancement of static and dynamic fracture toughness of Fe-0. 2C alloy by the addition of Co and Ni respectively, Proc. 6th Int. Conf. Mech. Behav. Mater. (ICM6), Kyoto, Japan, (1991).
DOI: 10.1016/b978-0-08-037890-9.50423-3
Google Scholar